This file is indexed.

/usr/share/perl5/Math/PlanePath/AztecDiamondRings.pm is in libmath-planepath-perl 117-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# cute groupings
# AztecDiamondRings, FibonacciWord fibonacci_word_type plain, 10x10 scale 15


package Math::PlanePath::AztecDiamondRings;
use 5.004;
use strict;
#use List::Util 'min', 'max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;

use constant n_frac_discontinuity => 0;
use constant xy_is_visited => 1;

sub x_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 1;
}
sub y_negative_at_n {
  my ($self) = @_;
  return $self->n_start + 2;
}
use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
use constant _UNDOCUMENTED__dxdy_list => (1,0,   # E
                           1,1,   # NE
                           # not North
                           -1,1,  # NW
                           -1,0,  # W
                           -1,-1, # SW
                           0,-1,  # S
                           1,-1); # SE;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
use constant dir_maximum_dxdy => (1,-1); # South-East

use constant parameter_info_array =>
  [
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  return $self;
}

# starting from X axis and n_start=0
# d = [ 1, 2, 3, 4, 5 ]
# n = [ 0,4,12,24,40 ]
# N = (2 d^2 - 2 d)
#   = (2*$d**2 - 2*$d)
#   = ((2*$d - 2)*$d)
# d = 1/2 + sqrt(1/2 * $n + 1/4)
#   = (sqrt(2*$n+1) + 1)/2
#
# X negative axis
# d = [ 1, 2, 3, 4,5 ]
# n = [ 2, 8, 18, 32, 50 ]
# N = (2 d^2)

sub n_to_xy {
  my ($self, $n) = @_;
  #### n_to_xy: $n

  # adjust to N=0 at origin X=0,Y=0
  $n = $n - $self->{'n_start'};
  if ($n < 0) { return; }

  my $d = int( (sqrt(2*int($n)+1) + 1)/2 );
  $n -= 2*$d*$d;   # to $n=0 half way around at horiz Y=-1 X<-1

  if ($n < 0) {
    my $x = -$d-$n-1;
    if ($n < -$d) {
      # top-right
      return ($x,
              min($n+2*$d, $d-1));
    } else {
      # top-left
      return (max($x, -$d),
              -1-$n);
    }
  } else {
    my $x = $n-$d;
    if ($n < $d) {
      # bottom-left
      my $y = -1-$n;
      return ($x,
              max($y, -$d));
    } else {
      # bottom-right
      return (min($x, $d-1),
              $n-2*$d);
    }
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### AztecDiamondRings xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ($x >= 0) {
    my $d = $x + abs($y);
    return (2*$d + 2)*$d + $y + $self->{'n_start'};
  }
  if ($y >= 0) {
    my $d = $y - $x;
    return 2*$d*$d - 1 - $y + $self->{'n_start'};
  } else {
    my $d = $y + $x;
    return (2*$d + 4)*$d + 1 - $y + $self->{'n_start'};
  }
}


#          |                   |  x2>=-x1         |
#    M---+ |               M-------M              |  +---M
#    |   | |               |   |   |              |  |   |
#    +---m |               +----m--+              |  m---+
#          |                   |                  |
#     -----+------      -------+-------      -----+--------
#          |                   |                  |
#
#          |                   |                  |
#    M---+ |               M-------M  y2>=-y1     |  +---M
#    |   | |               |   |   |              |  |   |
#    |   m |               |   |   |              |  m   |
#   -------+------      -------m-------      -----+--------
#    |   | |               |   |   |              |  |   |
#    M---+ |               M-------M              |  +---M
#          |                   |                  |
#
#          |                   |                  |
#     -----+------      -------+-------      -----+--------
#          |                   |                  |
#    +---m |               +--m----+              |  m---+
#    |   | |               |   |   |              |  |   |
#    M---+ |               M-------M              |  +---M
#          |                   |                  |

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### AztecDiamondRings rect_to_n_range(): "$x1,$y1, $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  my $min_x = 0;
  my $min_y = ($y2 < 0   ? ($min_x = -1, $y2)
               : $y1 > 0 ? $y1
               : 0);
  if ($x2 < $min_x)    { $min_x = $x2 }  # right edge if 0/-1 not covered
  elsif ($x1 > $min_x) { $min_x = $x1 }  # left edge if 0/-1 not covered

  my $max_y = ($y2 >= -$y1 ? $y2 : $y1);
  my $max_x = ($x2 >= -$x1-($max_y<0) ? $x2 : $x1);

  ### min at: "$min_x, $min_y"
  ### max at: "$max_x, $max_y"
  return ($self->xy_to_n($min_x,$min_y),
          $self->xy_to_n($max_x,$max_y));
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath ie xbase OEIS

=head1 NAME

Math::PlanePath::AztecDiamondRings -- rings around an Aztec diamond shape

=head1 SYNOPSIS

 use Math::PlanePath::AztecDiamondRings;
 my $path = Math::PlanePath::AztecDiamondRings->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path makes rings around an Aztec diamond shape,

=cut

# math-image --path=AztecDiamondRings --all --output=numbers --size=60x14

=pod

                 46-45                       4
                /     \
              47 29-28 44                    3
             /  /     \  \
           48 30 16-15 27 43  ...            2
          /  /  /     \  \  \  \
        49 31 17  7--6 14 26 42 62           1
       /  /  /  /     \  \  \  \  \
     50 32 18  8  2--1  5 13 25 41 61    <- Y=0
      |  |  |  |  |  |  |  |  |  |
     51 33 19  9  3--4 12 24 40 60          -1
       \  \  \  \     /  /  /  /
        52 34 20 10-11 23 39 59             -2
          \  \  \     /  /  /
           53 35 21-22 38 58                -3
             \  \     /  /
              54 36-37 57                   -4
                \     /
                 55-56                      -5

                     ^
    -5 -4 -3 -2 -1  X=0 1  2  3  4  5

This is similar to the C<DiamondSpiral>, but has all four corners flattened
to 2 vertical or horizontal, instead of just one in the C<DiamondSpiral>.
This is only a small change to the alignment of numbers in the sides, but is
more symmetric.

X<Hexagonal numbers>Y axis N=1,6,15,28,45,66,etc are the hexagonal numbers
k*(2k-1).  The hexagonal numbers of the "second kind" 3,10,21,36,55,78, etc
k*(2k+1), are the vertical at X=-1 going downwards.  Combining those two is
the triangular numbers 3,6,10,15,21,etc, k*(k+1)/2, alternately on one line
and the other.  Those are the positions of all the horizontal steps,
ie. where dY=0.

X<Centred square numbers>X axis N=1,5,13,25,etc is the "centred square
numbers".  Those numbers are made by drawing concentric squares with an
extra point on each side each time.  The path here grows the same way,
adding one extra point to each of the four sides.

    *---*---*---*
    |           |
    | *---*---* |     count total "*"s for
    | |       | |     centred square numbers
    * | *---* | *
    | | |   | | |
    | * | * | * |
    | | |   | | |
    | | *---* | |
    * |       | *
    | *---*---* |
    |           |
    *---*---*---*

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pattern.  For example to
start at 0,

=cut

# math-image --path=AztecDiamondRings,n_start=0 --expression='i<=59?i:0' --output=numbers --size=50x10

=pod

    n_start => 0

                45 44
             46 28 27 43
          47 29 15 14 26 42
       48 30 16  6  5 13 25 41
    49 31 17  7  1  0  4 12 24 40
    50 32 18  8  2  3 11 23 39 59
       51 33 19  9 10 22 38 58
          52 34 20 21 37 57
             53 35 36 56
                54 55

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::AztecDiamondRings-E<gt>new ()>

=item C<$path = Math::PlanePath::AztecDiamondRings-E<gt>new (n_start =E<gt> $n)>

Create and return a new Aztec diamond spiral object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

For C<$n < 1> the return is an empty list, it being considered the path
starts at 1.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  C<$x> and C<$y> are
each rounded to the nearest integer, which has the effect of treating each
point in the path as a square of side 1, so the entire plane is covered.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.

=back

=head1 FORMULAS

=head2 X,Y to N

The path makes lines in each quadrant.  The quadrant is determined by the
signs of X and Y, then the line in that quadrant is either d=X+Y or d=X-Y.
A quadratic in d gives a starting N for the line and Y (or X if desired) is
an offset from there,

    Y>=0 X>=0     d=X+Y  N=(2d+2)*d+1 + Y
    Y>=0 X<0      d=Y-X  N=2d^2       - Y
    Y<0  X>=0     d=X-Y  N=(2d+2)*d+1 + Y
    Y<0  X<0      d=X+Y  N=(2d+4)*d+2 - Y

For example

    Y=2 X=3       d=2+3=5      N=(2*5+2)*5+1  + 2  = 63
    Y=2 X=-1      d=2-(-1)=3   N=2*3*3        - 2  = 16
    Y=-1 X=4      d=4-(-1)=5   N=(2*5+2)*5+1  + -1 = 60
    Y=-2 X=-3     d=-3+(-2)=-5 N=(2*-5+4)*-5+2 - (-2) = 34

The two XE<gt>=0 cases are the same N formula and can be combined with an
abs,

    X>=0          d=X+abs(Y)   N=(2d+2)*d+1 + Y

This works because at Y=0 the last line of one ring joins up to the start of
the next.  For example N=11 to N=15,

    15             2
      \
       14          1
         \
          13   <- Y=0

       12         -1
      /
    11            -2

     ^
    X=0 1  2

=head2 Rectangle to N Range

Within each row N increases as X increases away from the Y axis, and within
each column similarly N increases as Y increases away from the X axis.  So
in a rectangle the maximum N is at one of the four corners of the rectangle.

              |
    x1,y2 M---|----M x2,y2
          |   |    |
       -------O---------
          |   |    |
          |   |    |
    x1,y1 M---|----M x1,y1
              |

For any two rows y1 and y2, the values in row y2 are all bigger than in y1
if y2E<gt>=-y1.  This is so even when y1 and y2 are on the same side of the
origin, ie. both positive or both negative.

For any two columns x1 and x2, the values in the part with YE<gt>=0 are all
bigger if x2E<gt>=-x1, or in the part of the columns with YE<lt>0 it's
x2E<gt>=-x1-1.  So the biggest corner is at

    max_y = (y2 >= -y1              ? y2 ? y1)
    max_x = (x2 >= -x1 - (max_y<0)  ? x2 : x1)

The difference in the X handling for Y positive or negative is due to the
quadrant ordering.  When YE<gt>=0, at X and -X the bigger N is the X
negative side, but when YE<lt>0 it's the X positive side.

A similar approach gives the minimum N in a rectangle.

    min_y = / y2 if y2 < 0, and set xbase=-1
            | y1 if y1 > 0, and set xbase=0
            \ 0 otherwise,  and set xbase=0

    min_x = / x2 if x2 < xbase
            | x1 if x1 > xbase
            \ xbase otherwise

The minimum row is Y=0, but if that's not in the rectangle then the y2 or y1
top or bottom edge is the minimum.  Then within any row the minimum N is at
xbase=0 if YE<lt>0 or xbase=-1 if YE<gt>=0.  If that xbase is not in range
then the x2 or x1 left or right edge is the minimum.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A001844> (etc)

=back

    n_start=1 (the default)
      A001844    N on X axis, the centred squares 2k(k+1)+1

    n_start=0
      A046092    N on X axis, 4*triangular
      A139277    N on diagonal X=Y
      A023532    abs(dY), being 0 if N=k*(k+3)/2

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DiamondSpiral>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut