/usr/include/HYPRE_sstruct_mv.h is in libhypre-dev 2.8.0b-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 | /*BHEADER**********************************************************************
* Copyright (c) 2008, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
* This file is part of HYPRE. See file COPYRIGHT for details.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License (as published by the Free
* Software Foundation) version 2.1 dated February 1999.
*
* $Revision: 2.31 $
***********************************************************************EHEADER*/
#ifndef HYPRE_SSTRUCT_MV_HEADER
#define HYPRE_SSTRUCT_MV_HEADER
#include "HYPRE_utilities.h"
#include "HYPRE.h"
#include "HYPRE_struct_mv.h"
#include "HYPRE_IJ_mv.h"
#ifdef __cplusplus
extern "C" {
#endif
/*--------------------------------------------------------------------------
*--------------------------------------------------------------------------*/
/**
* @name SStruct System Interface
*
* This interface represents a semi-structured-grid conceptual view of a linear
* system.
*
* @memo A semi-structured-grid conceptual interface
**/
/*@{*/
/*--------------------------------------------------------------------------
*--------------------------------------------------------------------------*/
/**
* @name SStruct Grids
**/
/*@{*/
struct hypre_SStructGrid_struct;
/**
* A grid object is constructed out of several structured ``parts'' and an
* optional unstructured ``part''. Each structured part has its own abstract
* index space.
**/
typedef struct hypre_SStructGrid_struct *HYPRE_SStructGrid;
/**
* An enumerated type that supports cell centered, node centered, face centered,
* and edge centered variables. Face centered variables are split into x-face,
* y-face, and z-face variables, and edge centered variables are split into
* x-edge, y-edge, and z-edge variables. The edge centered variable types are
* only used in 3D. In 2D, edge centered variables are handled by the face
* centered types.
*
* Variables are referenced relative to an abstract (cell centered) index in the
* following way:
* \begin{itemize}
* \item cell centered variables are aligned with the index;
* \item node centered variables are aligned with the cell corner
* at relative index (1/2, 1/2, 1/2);
* \item x-face, y-face, and z-face centered variables are aligned
* with the faces at relative indexes (1/2, 0, 0), (0, 1/2, 0),
* and (0, 0, 1/2), respectively;
* \item x-edge, y-edge, and z-edge centered variables are aligned
* with the edges at relative indexes (0, 1/2, 1/2), (1/2, 0, 1/2),
* and (1/2, 1/2, 0), respectively.
* \end{itemize}
*
* The supported identifiers are:
* \begin{itemize}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_CELL}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_NODE}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_XFACE}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_YFACE}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_ZFACE}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_XEDGE}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_YEDGE}
* \item {\tt HYPRE\_SSTRUCT\_VARIABLE\_ZEDGE}
* \end{itemize}
*
* NOTE: Although variables are referenced relative to a unique abstract
* cell-centered index, some variables are associated with multiple grid cells.
* For example, node centered variables in 3D are associated with 8 cells (away
* from boundaries). Although grid cells are distributed uniquely to different
* processes, variables may be owned by multiple processes because they may be
* associated with multiple cells.
**/
typedef HYPRE_Int HYPRE_SStructVariable;
#define HYPRE_SSTRUCT_VARIABLE_UNDEFINED -1
#define HYPRE_SSTRUCT_VARIABLE_CELL 0
#define HYPRE_SSTRUCT_VARIABLE_NODE 1
#define HYPRE_SSTRUCT_VARIABLE_XFACE 2
#define HYPRE_SSTRUCT_VARIABLE_YFACE 3
#define HYPRE_SSTRUCT_VARIABLE_ZFACE 4
#define HYPRE_SSTRUCT_VARIABLE_XEDGE 5
#define HYPRE_SSTRUCT_VARIABLE_YEDGE 6
#define HYPRE_SSTRUCT_VARIABLE_ZEDGE 7
/**
* Create an {\tt ndim}-dimensional grid object with {\tt nparts} structured
* parts.
**/
HYPRE_Int
HYPRE_SStructGridCreate(MPI_Comm comm,
HYPRE_Int ndim,
HYPRE_Int nparts,
HYPRE_SStructGrid *grid);
/**
* Destroy a grid object. An object should be explicitly destroyed using this
* destructor when the user's code no longer needs direct access to it. Once
* destroyed, the object must not be referenced again. Note that the object may
* not be deallocated at the completion of this call, since there may be
* internal package references to the object. The object will then be destroyed
* when all internal reference counts go to zero.
**/
HYPRE_Int
HYPRE_SStructGridDestroy(HYPRE_SStructGrid grid);
/**
* Set the extents for a box on a structured part of the grid.
**/
HYPRE_Int
HYPRE_SStructGridSetExtents(HYPRE_SStructGrid grid,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper);
/**
* Describe the variables that live on a structured part of the grid.
**/
HYPRE_Int
HYPRE_SStructGridSetVariables(HYPRE_SStructGrid grid,
HYPRE_Int part,
HYPRE_Int nvars,
HYPRE_SStructVariable *vartypes);
/**
* Describe additional variables that live at a particular index. These
* variables are appended to the array of variables set in
* \Ref{HYPRE_SStructGridSetVariables}, and are referenced as such.
*
* NOTE: This routine is not yet supported.
**/
HYPRE_Int
HYPRE_SStructGridAddVariables(HYPRE_SStructGrid grid,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int nvars,
HYPRE_SStructVariable *vartypes);
/**
* Set the ordering of variables in a finite element problem. This overrides
* the default ordering described below.
*
* Array {\tt ordering} is composed of blocks of size (1 + {\tt ndim}). Each
* block indicates a specific variable in the element and the ordering of the
* blocks defines the ordering of the variables. A block contains a variable
* number followed by an offset direction relative to the element's center. For
* example, a block containing (2, 1, -1, 0) means variable 2 on the edge
* located in the (1, -1, 0) direction from the center of the element. Note
* that here variable 2 must be of type {\tt ZEDGE} for this to make sense. The
* {\tt ordering} array must account for all variables in the element. This
* routine can only be called after \Ref{HYPRE_SStructGridSetVariables}.
*
* The default ordering for element variables (var, i, j, k) varies fastest in
* index i, followed by j, then k, then var. For example, if var 0, var 1, and
* var 2 are declared to be XFACE, YFACE, and NODE variables, respectively, then
* the default ordering (in 2D) would first list the two XFACE variables, then
* the two YFACE variables, then the four NODE variables as follows:
*
* (0,-1,0), (0,1,0), (1,0,-1), (1,0,1), (2,-1,-1), (2,1,-1), (2,-1,1), (2,1,1)
**/
HYPRE_Int
HYPRE_SStructGridSetFEMOrdering(HYPRE_SStructGrid grid,
HYPRE_Int part,
HYPRE_Int *ordering);
/**
* Describe how regions just outside of a part relate to other parts. This is
* done a box at a time.
*
* Parts {\tt part} and {\tt nbor\_part} must be different, except in the case
* where only cell-centered data is used.
*
* Indexes should increase from {\tt ilower} to {\tt iupper}. It is not
* necessary that indexes increase from {\tt nbor\_ilower} to {\tt
* nbor\_iupper}.
*
* The {\tt index\_map} describes the mapping of indexes 0, 1, and 2 on part
* {\tt part} to the corresponding indexes on part {\tt nbor\_part}. For
* example, triple (1, 2, 0) means that indexes 0, 1, and 2 on part {\tt part}
* map to indexes 1, 2, and 0 on part {\tt nbor\_part}, respectively.
*
* The {\tt index\_dir} describes the direction of the mapping in {\tt
* index\_map}. For example, triple (1, 1, -1) means that for indexes 0 and 1,
* increasing values map to increasing values on {\tt nbor\_part}, while for
* index 2, decreasing values map to increasing values.
*
* NOTE: All parts related to each other via this routine must have an identical
* list of variables and variable types. For example, if part 0 has only two
* variables on it, a cell centered variable and a node centered variable, and
* we declare part 1 to be a neighbor of part 0, then part 1 must also have only
* two variables on it, and they must be of type cell and node. In addition,
* variables associated with FACEs or EDGEs must be grouped together and listed
* in X, Y, Z order. This is to enable the code to correctly associate
* variables on one part with variables on its neighbor part when a coordinate
* transformation is specified. For example, an XFACE variable on one part may
* correspond to a YFACE variable on a neighbor part under a particular
* tranformation, and the code determines this association by assuming that the
* variable lists are as noted here.
**/
HYPRE_Int
HYPRE_SStructGridSetNeighborPart(HYPRE_SStructGrid grid,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int nbor_part,
HYPRE_Int *nbor_ilower,
HYPRE_Int *nbor_iupper,
HYPRE_Int *index_map,
HYPRE_Int *index_dir);
/**
* Describe how regions inside a part are shared with regions in other parts.
*
* Parts {\tt part} and {\tt shared\_part} must be different.
*
* Indexes should increase from {\tt ilower} to {\tt iupper}. It is not
* necessary that indexes increase from {\tt shared\_ilower} to {\tt
* shared\_iupper}. This is to maintain consistency with the {\tt
* SetNeighborPart} function, which is also able to describe shared regions but
* in a more limited fashion.
*
* The {\tt offset} is a triple (in 3D) used to indicate the dimensionality of
* the shared set of data and its position with respect to the box extents {\tt
* ilower} and {\tt iupper} on part {\tt part}. The dimensionality is given by
* the number of 0's in the triple, and the position is given by plus or minus
* 1's. For example: (0, 0, 0) indicates sharing of all data in the given box;
* (1, 0, 0) indicates sharing of data on the faces in the (1, 0, 0) direction;
* (1, 0, -1) indicates sharing of data on the edges in the (1, 0, -1)
* direction; and (1, -1, 1) indicates sharing of data on the nodes in the (1,
* -1, 1) direction. To ensure the dimensionality, it is required that for
* every nonzero entry, the corresponding extents of the box are the same. For
* example, if {\tt offset} is (0, 1, 0), then (2, 1, 3) and (10, 1, 15) are
* valid box extents, whereas (2, 1, 3) and (10, 7, 15) are invalid (because 1
* and 7 are not the same).
*
* The {\tt shared\_offset} is used in the same way as {\tt offset}, but with
* respect to the box extents {\tt shared\_ilower} and {\tt shared\_iupper} on
* part {\tt shared\_part}.
*
* The {\tt index\_map} describes the mapping of indexes 0, 1, and 2 on part
* {\tt part} to the corresponding indexes on part {\tt shared\_part}. For
* example, triple (1, 2, 0) means that indexes 0, 1, and 2 on part {\tt part}
* map to indexes 1, 2, and 0 on part {\tt shared\_part}, respectively.
*
* The {\tt index\_dir} describes the direction of the mapping in {\tt
* index\_map}. For example, triple (1, 1, -1) means that for indexes 0 and 1,
* increasing values map to increasing values on {\tt shared\_part}, while for
* index 2, decreasing values map to increasing values.
*
* NOTE: All parts related to each other via this routine must have an identical
* list of variables and variable types. For example, if part 0 has only two
* variables on it, a cell centered variable and a node centered variable, and
* we declare part 1 to have shared regions with part 0, then part 1 must also
* have only two variables on it, and they must be of type cell and node. In
* addition, variables associated with FACEs or EDGEs must be grouped together
* and listed in X, Y, Z order. This is to enable the code to correctly
* associate variables on one part with variables on a shared part when a
* coordinate transformation is specified. For example, an XFACE variable on
* one part may correspond to a YFACE variable on a shared part under a
* particular tranformation, and the code determines this association by
* assuming that the variable lists are as noted here.
**/
HYPRE_Int
HYPRE_SStructGridSetSharedPart(HYPRE_SStructGrid grid,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int *offset,
HYPRE_Int shared_part,
HYPRE_Int *shared_ilower,
HYPRE_Int *shared_iupper,
HYPRE_Int *shared_offset,
HYPRE_Int *index_map,
HYPRE_Int *index_dir);
/**
* Add an unstructured part to the grid. The variables in the unstructured part
* of the grid are referenced by a global rank between 0 and the total number of
* unstructured variables minus one. Each process owns some unique consecutive
* range of variables, defined by {\tt ilower} and {\tt iupper}.
*
* NOTE: This is just a placeholder. This part of the interface is not finished.
**/
HYPRE_Int
HYPRE_SStructGridAddUnstructuredPart(HYPRE_SStructGrid grid,
HYPRE_Int ilower,
HYPRE_Int iupper);
/**
* Finalize the construction of the grid before using.
**/
HYPRE_Int
HYPRE_SStructGridAssemble(HYPRE_SStructGrid grid);
/**
* Set the periodicity a particular part.
*
* The argument {\tt periodic} is an {\tt ndim}-dimensional integer array that
* contains the periodicity for each dimension. A zero value for a dimension
* means non-periodic, while a nonzero value means periodic and contains the
* actual period. For example, periodicity in the first and third dimensions
* for a 10x11x12 part is indicated by the array [10,0,12].
*
* NOTE: Currently, this routine will only have an effect for matrix object
* types {\tt HYPRE\_SSTRUCT} and {\tt HYPRE\_STRUCT}. For {\tt HYPRE\_PARCSR},
* periodicity must be set up manually through other routines such as
* \Ref{HYPRE_SStructGridSetNeighborPart}.
*
* NOTE: Some of the solvers in hypre have power-of-two restrictions on the size
* of the periodic dimensions.
**/
HYPRE_Int
HYPRE_SStructGridSetPeriodic(HYPRE_SStructGrid grid,
HYPRE_Int part,
HYPRE_Int *periodic);
/**
* Setting ghost in the sgrids.
**/
HYPRE_Int
HYPRE_SStructGridSetNumGhost(HYPRE_SStructGrid grid,
HYPRE_Int *num_ghost);
/*@}*/
/*--------------------------------------------------------------------------
*--------------------------------------------------------------------------*/
/**
* @name SStruct Stencils
**/
/*@{*/
struct hypre_SStructStencil_struct;
/**
* The stencil object.
**/
typedef struct hypre_SStructStencil_struct *HYPRE_SStructStencil;
/**
* Create a stencil object for the specified number of spatial dimensions and
* stencil entries.
**/
HYPRE_Int
HYPRE_SStructStencilCreate(HYPRE_Int ndim,
HYPRE_Int size,
HYPRE_SStructStencil *stencil);
/**
* Destroy a stencil object.
**/
HYPRE_Int
HYPRE_SStructStencilDestroy(HYPRE_SStructStencil stencil);
/**
* Set a stencil entry.
**/
HYPRE_Int
HYPRE_SStructStencilSetEntry(HYPRE_SStructStencil stencil,
HYPRE_Int entry,
HYPRE_Int *offset,
HYPRE_Int var);
/*@}*/
/*--------------------------------------------------------------------------
*--------------------------------------------------------------------------*/
/**
* @name SStruct Graphs
**/
/*@{*/
struct hypre_SStructGraph_struct;
/**
* The graph object is used to describe the nonzero structure of a matrix.
**/
typedef struct hypre_SStructGraph_struct *HYPRE_SStructGraph;
/**
* Create a graph object.
**/
HYPRE_Int
HYPRE_SStructGraphCreate(MPI_Comm comm,
HYPRE_SStructGrid grid,
HYPRE_SStructGraph *graph);
/**
* Destroy a graph object.
**/
HYPRE_Int
HYPRE_SStructGraphDestroy(HYPRE_SStructGraph graph);
/**
* Set the domain grid.
**/
HYPRE_Int
HYPRE_SStructGraphSetDomainGrid(HYPRE_SStructGraph graph,
HYPRE_SStructGrid domain_grid);
/**
* Set the stencil for a variable on a structured part of the grid.
**/
HYPRE_Int
HYPRE_SStructGraphSetStencil(HYPRE_SStructGraph graph,
HYPRE_Int part,
HYPRE_Int var,
HYPRE_SStructStencil stencil);
/**
* Indicate that an FEM approach will be used to set matrix values on this part.
**/
HYPRE_Int
HYPRE_SStructGraphSetFEM(HYPRE_SStructGraph graph,
HYPRE_Int part);
/**
* Set the finite element stiffness matrix sparsity. This overrides the default
* full sparsity pattern described below.
*
* Array {\tt sparsity} contains {\tt nsparse} row/column tuples (I,J) that
* indicate the nonzeroes of the local stiffness matrix. The layout of the
* values passed into the routine \Ref{HYPRE_SStructMatrixAddFEMValues} is
* determined here.
*
* The default sparsity is full (each variable is coupled to all others), and
* the values passed into the routine \Ref{HYPRE_SStructMatrixAddFEMValues} are
* assumed to be by rows (that is, column indices vary fastest).
**/
HYPRE_Int
HYPRE_SStructGraphSetFEMSparsity(HYPRE_SStructGraph graph,
HYPRE_Int part,
HYPRE_Int nsparse,
HYPRE_Int *sparsity);
/**
* Add a non-stencil graph entry at a particular index. This graph entry is
* appended to the existing graph entries, and is referenced as such.
*
* NOTE: Users are required to set graph entries on all processes that own the
* associated variables. This means that some data will be multiply defined.
**/
HYPRE_Int
HYPRE_SStructGraphAddEntries(HYPRE_SStructGraph graph,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int var,
HYPRE_Int to_part,
HYPRE_Int *to_index,
HYPRE_Int to_var);
/**
* Finalize the construction of the graph before using.
**/
HYPRE_Int
HYPRE_SStructGraphAssemble(HYPRE_SStructGraph graph);
/**
* Set the storage type of the associated matrix object. It is used before
* AddEntries and Assemble to compute the right ranks in the graph.
*
* NOTE: This routine is only necessary for implementation reasons, and will
* eventually be removed.
*
* @see HYPRE_SStructMatrixSetObjectType
**/
HYPRE_Int
HYPRE_SStructGraphSetObjectType(HYPRE_SStructGraph graph,
HYPRE_Int type);
/*@}*/
/*--------------------------------------------------------------------------
*--------------------------------------------------------------------------*/
/**
* @name SStruct Matrices
**/
/*@{*/
struct hypre_SStructMatrix_struct;
/**
* The matrix object.
**/
typedef struct hypre_SStructMatrix_struct *HYPRE_SStructMatrix;
/**
* Create a matrix object.
**/
HYPRE_Int
HYPRE_SStructMatrixCreate(MPI_Comm comm,
HYPRE_SStructGraph graph,
HYPRE_SStructMatrix *matrix);
/**
* Destroy a matrix object.
**/
HYPRE_Int
HYPRE_SStructMatrixDestroy(HYPRE_SStructMatrix matrix);
/**
* Prepare a matrix object for setting coefficient values.
**/
HYPRE_Int
HYPRE_SStructMatrixInitialize(HYPRE_SStructMatrix matrix);
/**
* Set matrix coefficients index by index. The {\tt values} array is of length
* {\tt nentries}.
*
* NOTE: For better efficiency, use \Ref{HYPRE_SStructMatrixSetBoxValues} to set
* coefficients a box at a time.
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* NOTE: The entries in this routine must all be of the same type: either
* stencil or non-stencil, but not both. Also, if they are stencil entries,
* they must all represent couplings to the same variable type (there are no
* such restrictions for non-stencil entries).
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixSetValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int var,
HYPRE_Int nentries,
HYPRE_Int *entries,
double *values);
/**
* Add to matrix coefficients index by index. The {\tt values} array is of
* length {\tt nentries}.
*
* NOTE: For better efficiency, use \Ref{HYPRE_SStructMatrixAddToBoxValues} to
* set coefficients a box at a time.
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* NOTE: The entries in this routine must all be of the same type: either
* stencil or non-stencil, but not both. Also, if they are stencil entries,
* they must all represent couplings to the same variable type.
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixAddToValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int var,
HYPRE_Int nentries,
HYPRE_Int *entries,
double *values);
/**
* Add finite element stiffness matrix coefficients index by index. The layout
* of the data in {\tt values} is determined by the routines
* \Ref{HYPRE_SStructGridSetFEMOrdering} and
* \Ref{HYPRE_SStructGraphSetFEMSparsity}.
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixAddFEMValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *index,
double *values);
/**
* Get matrix coefficients index by index. The {\tt values} array is of length
* {\tt nentries}.
*
* NOTE: For better efficiency, use \Ref{HYPRE_SStructMatrixGetBoxValues} to get
* coefficients a box at a time.
*
* NOTE: Users may get values on any process that owns the associated variables.
*
* NOTE: The entries in this routine must all be of the same type: either
* stencil or non-stencil, but not both. Also, if they are stencil entries,
* they must all represent couplings to the same variable type (there are no
* such restrictions for non-stencil entries).
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixGetValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int var,
HYPRE_Int nentries,
HYPRE_Int *entries,
double *values);
/**
* Get finite element stiffness matrix coefficients index by index. The layout
* of the data in {\tt values} is determined by the routines
* \Ref{HYPRE_SStructGridSetFEMOrdering} and
* \Ref{HYPRE_SStructGraphSetFEMSparsity}.
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixGetFEMValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *index,
double *values);
/**
* Set matrix coefficients a box at a time. The data in {\tt values} is ordered
* as follows:
*
\begin{verbatim}
m = 0;
for (k = ilower[2]; k <= iupper[2]; k++)
for (j = ilower[1]; j <= iupper[1]; j++)
for (i = ilower[0]; i <= iupper[0]; i++)
for (entry = 0; entry < nentries; entry++)
{
values[m] = ...;
m++;
}
\end{verbatim}
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* NOTE: The entries in this routine must all be of the same type: either
* stencil or non-stencil, but not both. Also, if they are stencil entries,
* they must all represent couplings to the same variable type (there are no
* such restrictions for non-stencil entries).
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixSetBoxValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int var,
HYPRE_Int nentries,
HYPRE_Int *entries,
double *values);
/**
* Add to matrix coefficients a box at a time. The data in {\tt values} is
* ordered as in \Ref{HYPRE_SStructMatrixSetBoxValues}.
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* NOTE: The entries in this routine must all be of stencil type. Also, they
* must all represent couplings to the same variable type.
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixAddToBoxValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int var,
HYPRE_Int nentries,
HYPRE_Int *entries,
double *values);
/**
* Get matrix coefficients a box at a time. The data in {\tt values} is
* ordered as in \Ref{HYPRE_SStructMatrixSetBoxValues}.
*
* NOTE: Users may get values on any process that owns the associated variables.
*
* NOTE: The entries in this routine must all be of stencil type. Also, they
* must all represent couplings to the same variable type.
*
* If the matrix is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructMatrixSetComplex
**/
HYPRE_Int
HYPRE_SStructMatrixGetBoxValues(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int var,
HYPRE_Int nentries,
HYPRE_Int *entries,
double *values);
/**
* Finalize the construction of the matrix before using.
**/
HYPRE_Int
HYPRE_SStructMatrixAssemble(HYPRE_SStructMatrix matrix);
/**
* Define symmetry properties for the stencil entries in the matrix. The
* boolean argument {\tt symmetric} is applied to stencil entries on part {\tt
* part} that couple variable {\tt var} to variable {\tt to\_var}. A value of
* -1 may be used for {\tt part}, {\tt var}, or {\tt to\_var} to specify
* ``all''. For example, if {\tt part} and {\tt to\_var} are set to -1, then
* the boolean is applied to stencil entries on all parts that couple variable
* {\tt var} to all other variables.
*
* By default, matrices are assumed to be nonsymmetric. Significant
* storage savings can be made if the matrix is symmetric.
**/
HYPRE_Int
HYPRE_SStructMatrixSetSymmetric(HYPRE_SStructMatrix matrix,
HYPRE_Int part,
HYPRE_Int var,
HYPRE_Int to_var,
HYPRE_Int symmetric);
/**
* Define symmetry properties for all non-stencil matrix entries.
**/
HYPRE_Int
HYPRE_SStructMatrixSetNSSymmetric(HYPRE_SStructMatrix matrix,
HYPRE_Int symmetric);
/**
* Set the storage type of the matrix object to be constructed. Currently, {\tt
* type} can be either {\tt HYPRE\_SSTRUCT} (the default), {\tt HYPRE\_STRUCT},
* or {\tt HYPRE\_PARCSR}.
*
* @see HYPRE_SStructMatrixGetObject
**/
HYPRE_Int
HYPRE_SStructMatrixSetObjectType(HYPRE_SStructMatrix matrix,
HYPRE_Int type);
/**
* Get a reference to the constructed matrix object.
*
* @see HYPRE_SStructMatrixSetObjectType
**/
HYPRE_Int
HYPRE_SStructMatrixGetObject(HYPRE_SStructMatrix matrix,
void **object);
/**
* Set the matrix to be complex.
**/
HYPRE_Int
HYPRE_SStructMatrixSetComplex(HYPRE_SStructMatrix matrix);
/**
* Print the matrix to file. This is mainly for debugging purposes.
**/
HYPRE_Int
HYPRE_SStructMatrixPrint(const char *filename,
HYPRE_SStructMatrix matrix,
HYPRE_Int all);
/*@}*/
/*--------------------------------------------------------------------------
*--------------------------------------------------------------------------*/
/**
* @name SStruct Vectors
**/
/*@{*/
struct hypre_SStructVector_struct;
/**
* The vector object.
**/
typedef struct hypre_SStructVector_struct *HYPRE_SStructVector;
/**
* Create a vector object.
**/
HYPRE_Int
HYPRE_SStructVectorCreate(MPI_Comm comm,
HYPRE_SStructGrid grid,
HYPRE_SStructVector *vector);
/**
* Destroy a vector object.
**/
HYPRE_Int
HYPRE_SStructVectorDestroy(HYPRE_SStructVector vector);
/**
* Prepare a vector object for setting coefficient values.
**/
HYPRE_Int
HYPRE_SStructVectorInitialize(HYPRE_SStructVector vector);
/**
* Set vector coefficients index by index.
*
* NOTE: For better efficiency, use \Ref{HYPRE_SStructVectorSetBoxValues} to set
* coefficients a box at a time.
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* If the vector is complex, then {\tt value} consists of a pair of doubles
* representing the real and imaginary parts of the complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorSetValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int var,
double *value);
/**
* Add to vector coefficients index by index.
*
* NOTE: For better efficiency, use \Ref{HYPRE_SStructVectorAddToBoxValues} to
* set coefficients a box at a time.
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* If the vector is complex, then {\tt value} consists of a pair of doubles
* representing the real and imaginary parts of the complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorAddToValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int var,
double *value);
/**
* Add finite element vector coefficients index by index. The layout of the
* data in {\tt values} is determined by the routine
* \Ref{HYPRE_SStructGridSetFEMOrdering}.
*
* If the vector is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorAddFEMValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *index,
double *values);
/**
* Get vector coefficients index by index. Users must first call the routine
* \Ref{HYPRE_SStructVectorGather} to ensure that data owned by multiple
* processes is correct.
*
* NOTE: For better efficiency, use \Ref{HYPRE_SStructVectorGetBoxValues} to get
* coefficients a box at a time.
*
* NOTE: Users may only get values on processes that own the associated
* variables.
*
* If the vector is complex, then {\tt value} consists of a pair of doubles
* representing the real and imaginary parts of the complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorGetValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *index,
HYPRE_Int var,
double *value);
/**
* Get finite element vector coefficients index by index. The layout of the
* data in {\tt values} is determined by the routine
* \Ref{HYPRE_SStructGridSetFEMOrdering}. Users must first call the routine
* \Ref{HYPRE_SStructVectorGather} to ensure that data owned by multiple
* processes is correct.
*
* If the vector is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorGetFEMValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *index,
double *values);
/**
* Set vector coefficients a box at a time. The data in {\tt values} is ordered
* as follows:
*
\begin{verbatim}
m = 0;
for (k = ilower[2]; k <= iupper[2]; k++)
for (j = ilower[1]; j <= iupper[1]; j++)
for (i = ilower[0]; i <= iupper[0]; i++)
{
values[m] = ...;
m++;
}
\end{verbatim}
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* If the vector is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorSetBoxValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int var,
double *values);
/**
* Add to vector coefficients a box at a time. The data in {\tt values} is
* ordered as in \Ref{HYPRE_SStructVectorSetBoxValues}.
*
* NOTE: Users are required to set values on all processes that own the
* associated variables. This means that some data will be multiply defined.
*
* If the vector is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorAddToBoxValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int var,
double *values);
/**
* Get vector coefficients a box at a time. The data in {\tt values} is ordered
* as in \Ref{HYPRE_SStructVectorSetBoxValues}. Users must first call the
* routine \Ref{HYPRE_SStructVectorGather} to ensure that data owned by multiple
* processes is correct.
*
* NOTE: Users may only get values on processes that own the associated
* variables.
*
* If the vector is complex, then {\tt values} consists of pairs of doubles
* representing the real and imaginary parts of each complex value.
*
* @see HYPRE_SStructVectorSetComplex
**/
HYPRE_Int
HYPRE_SStructVectorGetBoxValues(HYPRE_SStructVector vector,
HYPRE_Int part,
HYPRE_Int *ilower,
HYPRE_Int *iupper,
HYPRE_Int var,
double *values);
/**
* Finalize the construction of the vector before using.
**/
HYPRE_Int
HYPRE_SStructVectorAssemble(HYPRE_SStructVector vector);
/**
* Gather vector data so that efficient {\tt GetValues} can be done. This
* routine must be called prior to calling {\tt GetValues} to ensure that
* correct and consistent values are returned, especially for non cell-centered
* data that is shared between more than one processor.
**/
HYPRE_Int
HYPRE_SStructVectorGather(HYPRE_SStructVector vector);
/**
* Set the storage type of the vector object to be constructed. Currently, {\tt
* type} can be either {\tt HYPRE\_SSTRUCT} (the default), {\tt HYPRE\_STRUCT},
* or {\tt HYPRE\_PARCSR}.
*
* @see HYPRE_SStructVectorGetObject
**/
HYPRE_Int
HYPRE_SStructVectorSetObjectType(HYPRE_SStructVector vector,
HYPRE_Int type);
/**
* Get a reference to the constructed vector object.
*
* @see HYPRE_SStructVectorSetObjectType
**/
HYPRE_Int
HYPRE_SStructVectorGetObject(HYPRE_SStructVector vector,
void **object);
/**
* Set the vector to be complex.
**/
HYPRE_Int
HYPRE_SStructVectorSetComplex(HYPRE_SStructVector vector);
/**
* Print the vector to file. This is mainly for debugging purposes.
**/
HYPRE_Int
HYPRE_SStructVectorPrint(const char *filename,
HYPRE_SStructVector vector,
HYPRE_Int all);
/*@}*/
/*@}*/
/*--------------------------------------------------------------------------
*--------------------------------------------------------------------------*/
#ifdef __cplusplus
}
#endif
#endif
|