This file is indexed.

/usr/share/doc/libghc-classy-prelude-doc/html/classy-prelude.txt is in libghc-classy-prelude-doc 0.9.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | A typeclass-based Prelude.
--   
--   Focuses on using common typeclasses when possible, and creating new
--   ones to avoid name clashing. Exposes many recommended datastructures
--   (Map, ByteString, etc) directly without requiring long import lists
--   and qualified modules.
@package classy-prelude
@version 0.9.3

module ClassyPrelude

-- | We define our own <tt>undefined</tt> which is marked as deprecated.
--   This makes it useful to use during development, but let's you more
--   easily getting notification if you accidentally ship partial code in
--   production.
--   
--   The classy prelude recommendation for when you need to really have a
--   partial function in production is to use <tt>error</tt> with a very
--   descriptive message so that, in case an exception is thrown, you get
--   more information than <tt>Prelude.undefined</tt>.
--   
--   Since 0.5.5

-- | <i>Deprecated: It is highly recommended that you either avoid partial
--   functions or provide meaningful error messages </i>
undefined :: a
(++) :: Monoid m => m -> m -> m
class Semigroup a
(<>) :: Semigroup a => a -> a -> a
sconcat :: Semigroup a => NonEmpty a -> a
times1p :: (Semigroup a, Whole n) => n -> a -> a

-- | Provide a Semigroup for an arbitrary Monoid.
data WrappedMonoid m :: * -> *

-- | Only perform the action if the predicate returns <tt>True</tt>.
--   
--   Since 0.9.2
whenM :: Monad m => m Bool -> m () -> m ()

-- | Only perform the action if the predicate returns <tt>False</tt>.
--   
--   Since 0.9.2
unlessM :: Monad m => m Bool -> m () -> m ()

-- | Generalized version of <a>atomically</a>.
atomically :: MonadIO m => STM a -> m a

-- | Synonym for <a>always</a>.
alwaysSTM :: STM Bool -> STM ()

-- | Synonym for <a>alwaysSucceeds</a>.
alwaysSucceedsSTM :: STM a -> STM ()

-- | Synonym for <a>retry</a>.
retrySTM :: STM a

-- | Synonym for <a>orElse</a>.
orElseSTM :: STM a -> STM a -> STM a

-- | Synonym for <a>check</a>.
checkSTM :: Bool -> STM ()

-- | The <a>trace</a> function outputs the trace message given as its first
--   argument, before returning the second argument as its result.
--   
--   For example, this returns the value of <tt>f x</tt> but first outputs
--   the message.
--   
--   <pre>
--   trace ("calling f with x = " ++ show x) (f x)
--   </pre>
--   
--   The <a>trace</a> function should <i>only</i> be used for debugging, or
--   for monitoring execution. The function is not referentially
--   transparent: its type indicates that it is a pure function but it has
--   the side effect of outputting the trace message.
trace :: String -> a -> a

-- | Like <a>trace</a>, but uses <a>show</a> on the argument to convert it
--   to a <a>String</a>.
--   
--   This makes it convenient for printing the values of interesting
--   variables or expressions inside a function. For example here we print
--   the value of the variables <tt>x</tt> and <tt>z</tt>:
--   
--   <pre>
--   f x y =
--       traceShow (x, z) $ result
--     where
--       z = ...
--       ...
--   </pre>
traceShow :: Show a => a -> b -> b

-- | Since 0.5.9
traceId :: String -> String

-- | Since 0.5.9
traceM :: Monad m => String -> m ()

-- | Since 0.5.9
traceShowId :: Show a => a -> a

-- | Since 0.5.9
traceShowM :: (Show a, Monad m) => a -> m ()

-- | If the first argument evaluates to <a>True</a>, then the result is the
--   second argument. Otherwise an <tt>AssertionFailed</tt> exception is
--   raised, containing a <a>String</a> with the source file and line
--   number of the call to <a>assert</a>.
--   
--   Assertions can normally be turned on or off with a compiler flag (for
--   GHC, assertions are normally on unless optimisation is turned on with
--   <tt>-O</tt> or the <tt>-fignore-asserts</tt> option is given). When
--   assertions are turned off, the first argument to <a>assert</a> is
--   ignored, and the second argument is returned as the result.
assert :: Bool -> a -> a
defaultTimeLocale :: TimeLocale

-- | Representable types of kind *. This class is derivable in GHC with the
--   DeriveGeneric flag on.
class Generic a

-- | Haskell defines operations to read and write characters from and to
--   files, represented by values of type <tt>Handle</tt>. Each value of
--   this type is a <i>handle</i>: a record used by the Haskell run-time
--   system to <i>manage</i> I/O with file system objects. A handle has at
--   least the following properties:
--   
--   <ul>
--   <li>whether it manages input or output or both;</li>
--   <li>whether it is <i>open</i>, <i>closed</i> or
--   <i>semi-closed</i>;</li>
--   <li>whether the object is seekable;</li>
--   <li>whether buffering is disabled, or enabled on a line or block
--   basis;</li>
--   <li>a buffer (whose length may be zero).</li>
--   </ul>
--   
--   Most handles will also have a current I/O position indicating where
--   the next input or output operation will occur. A handle is
--   <i>readable</i> if it manages only input or both input and output;
--   likewise, it is <i>writable</i> if it manages only output or both
--   input and output. A handle is <i>open</i> when first allocated. Once
--   it is closed it can no longer be used for either input or output,
--   though an implementation cannot re-use its storage while references
--   remain to it. Handles are in the <a>Show</a> and <a>Eq</a> classes.
--   The string produced by showing a handle is system dependent; it should
--   include enough information to identify the handle for debugging. A
--   handle is equal according to <a>==</a> only to itself; no attempt is
--   made to compare the internal state of different handles for equality.
data Handle :: *

-- | A handle managing input from the Haskell program's standard input
--   channel.
stdin :: Handle

-- | A handle managing output to the Haskell program's standard output
--   channel.
stdout :: Handle

-- | A handle managing output to the Haskell program's standard error
--   channel.
stderr :: Handle
map :: Functor f => (a -> b) -> f a -> f b
concat :: (MonoFoldable c, Monoid (Element c)) => c -> Element c
concatMap :: (Monoid m, MonoFoldable c) => (Element c -> m) -> c -> m
length :: MonoFoldable c => c -> Int
null :: MonoFoldable c => c -> Bool
pack :: IsSequence c => [Element c] -> c
unpack :: MonoFoldable c => c -> [Element c]

-- | Repack from one type to another, dropping to a list in the middle.
--   
--   <tt>repack = pack . unpack</tt>.
repack :: (MonoFoldable a, IsSequence b, Element a ~ Element b) => a -> b
toList :: MonoFoldable c => c -> [Element c]

-- | Map each element of a structure to a monadic action, evaluate these
--   actions from left to right, and collect the results.
mapM :: Traversable t => forall a (m :: * -> *) b. Monad m => (a -> m b) -> t a -> m (t b)
mapM_ :: (Monad m, MonoFoldable c) => (Element c -> m ()) -> c -> m ()

-- | <a>forM</a> is <a>mapM</a> with its arguments flipped.
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
forM_ :: (Monad m, MonoFoldable c) => c -> (Element c -> m ()) -> m ()
any :: MonoFoldable c => (Element c -> Bool) -> c -> Bool
all :: MonoFoldable c => (Element c -> Bool) -> c -> Bool

-- | Since 0.9.2
and :: (MonoFoldable mono, Element mono ~ Bool) => mono -> Bool

-- | Since 0.9.2
or :: (MonoFoldable mono, Element mono ~ Bool) => mono -> Bool
foldl' :: MonoFoldable c => (a -> Element c -> a) -> a -> c -> a
foldr :: MonoFoldable c => (Element c -> b -> b) -> b -> c -> b
foldM :: (Monad m, MonoFoldable c) => (a -> Element c -> m a) -> a -> c -> m a
readMay :: (Element c ~ Char, MonoFoldable c, Read a) => c -> Maybe a
intercalate :: (Monoid (Element c), IsSequence c) => Element c -> c -> Element c
zip :: Zip f => forall a b. f a -> f b -> f (a, b)
zip3 :: Zip3 f => forall a b c. f a -> f b -> f c -> f (a, b, c)
zip4 :: Zip4 f => forall a b c d. f a -> f b -> f c -> f d -> f (a, b, c, d)
zip5 :: Zip5 f => forall a b c d e. f a -> f b -> f c -> f d -> f e -> f (a, b, c, d, e)
zip6 :: Zip6 f => forall a b c d e g. f a -> f b -> f c -> f d -> f e -> f g -> f (a, b, c, d, e, g)
zip7 :: Zip7 f => forall a b c d e g h. f a -> f b -> f c -> f d -> f e -> f g -> f h -> f (a, b, c, d, e, g, h)
unzip :: Zip f => forall a b. f (a, b) -> (f a, f b)
unzip3 :: Zip3 f => forall a b c. f (a, b, c) -> (f a, f b, f c)
unzip4 :: Zip4 f => forall a b c d. f (a, b, c, d) -> (f a, f b, f c, f d)
unzip5 :: Zip5 f => forall a b c d e. f (a, b, c, d, e) -> (f a, f b, f c, f d, f e)
unzip6 :: Zip6 f => forall a b c d e g. f (a, b, c, d, e, g) -> (f a, f b, f c, f d, f e, f g)
unzip7 :: Zip7 f => forall a b c d e g h. f (a, b, c, d, e, g, h) -> (f a, f b, f c, f d, f e, f g, f h)
zipWith :: Zip f => forall a b c. (a -> b -> c) -> f a -> f b -> f c
zipWith3 :: Zip3 f => forall a b c d. (a -> b -> c -> d) -> f a -> f b -> f c -> f d
zipWith4 :: Zip4 f => forall a b c d e. (a -> b -> c -> d -> e) -> f a -> f b -> f c -> f d -> f e
zipWith5 :: Zip5 f => forall a b c d e g. (a -> b -> c -> d -> e -> g) -> f a -> f b -> f c -> f d -> f e -> f g
zipWith6 :: Zip6 f => forall a b c d e g h. (a -> b -> c -> d -> e -> g -> h) -> f a -> f b -> f c -> f d -> f e -> f g -> f h
zipWith7 :: Zip7 f => forall a b c d e g h i. (a -> b -> c -> d -> e -> g -> h -> i) -> f a -> f b -> f c -> f d -> f e -> f g -> f h -> f i

-- | same behavior as nub, but requires Hashable &amp; Eq and is O(n log n)
--   https:<i></i>github.com<i>nh2</i>haskell-ordnub
hashNub :: (Hashable a, Eq a) => [a] -> [a]

-- | same behavior as nub, but requires Ord and is O(n log n)
--   https:<i></i>github.com<i>nh2</i>haskell-ordnub
ordNub :: Ord a => [a] -> [a]

-- | same behavior as nubBy, but requires Ord and is O(n log n)
--   https:<i></i>github.com<i>nh2</i>haskell-ordnub
ordNubBy :: Ord b => (a -> b) -> (a -> a -> Bool) -> [a] -> [a]

-- | Sort elements using the user supplied function to project something
--   out of each element. Inspired by
--   <a>http://hackage.haskell.org/packages/archive/base/latest/doc/html/GHC-Exts.html#v:sortWith</a>.
sortWith :: (Ord a, IsSequence c) => (Element c -> a) -> c -> c
compareLength :: (Integral i, MonoFoldable c) => c -> i -> Ordering
sum :: (MonoFoldable c, Num (Element c)) => c -> Element c
product :: (MonoFoldable c, Num (Element c)) => c -> Element c

-- | <a>repeat</a> <tt>x</tt> is an infinite list, with <tt>x</tt> the
--   value of every element.
repeat :: a -> [a]

-- | An alias for <a>difference</a>.
(\\) :: SetContainer a => a -> a -> a

-- | An alias for <a>intersection</a>.
intersect :: SetContainer a => a -> a -> a
unions :: (MonoFoldable c, SetContainer (Element c)) => c -> Element c

-- | Conversion of values to readable <a>String</a>s.
--   
--   Minimal complete definition: <a>showsPrec</a> or <a>show</a>.
--   
--   Derived instances of <a>Show</a> have the following properties, which
--   are compatible with derived instances of <a>Read</a>:
--   
--   <ul>
--   <li>The result of <a>show</a> is a syntactically correct Haskell
--   expression containing only constants, given the fixity declarations in
--   force at the point where the type is declared. It contains only the
--   constructor names defined in the data type, parentheses, and spaces.
--   When labelled constructor fields are used, braces, commas, field
--   names, and equal signs are also used.</li>
--   <li>If the constructor is defined to be an infix operator, then
--   <a>showsPrec</a> will produce infix applications of the
--   constructor.</li>
--   <li>the representation will be enclosed in parentheses if the
--   precedence of the top-level constructor in <tt>x</tt> is less than
--   <tt>d</tt> (associativity is ignored). Thus, if <tt>d</tt> is
--   <tt>0</tt> then the result is never surrounded in parentheses; if
--   <tt>d</tt> is <tt>11</tt> it is always surrounded in parentheses,
--   unless it is an atomic expression.</li>
--   <li>If the constructor is defined using record syntax, then
--   <a>show</a> will produce the record-syntax form, with the fields given
--   in the same order as the original declaration.</li>
--   </ul>
--   
--   For example, given the declarations
--   
--   <pre>
--   infixr 5 :^:
--   data Tree a =  Leaf a  |  Tree a :^: Tree a
--   </pre>
--   
--   the derived instance of <a>Show</a> is equivalent to
--   
--   <pre>
--   instance (Show a) =&gt; Show (Tree a) where
--   
--          showsPrec d (Leaf m) = showParen (d &gt; app_prec) $
--               showString "Leaf " . showsPrec (app_prec+1) m
--            where app_prec = 10
--   
--          showsPrec d (u :^: v) = showParen (d &gt; up_prec) $
--               showsPrec (up_prec+1) u .
--               showString " :^: "      .
--               showsPrec (up_prec+1) v
--            where up_prec = 5
--   </pre>
--   
--   Note that right-associativity of <tt>:^:</tt> is ignored. For example,
--   
--   <ul>
--   <li><tt><a>show</a> (Leaf 1 :^: Leaf 2 :^: Leaf 3)</tt> produces the
--   string <tt>"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"</tt>.</li>
--   </ul>
class Show a
showsPrec :: Show a => Int -> a -> ShowS
show :: Show a => a -> String
showList :: Show a => [a] -> ShowS
tshow :: Show a => a -> Text
tlshow :: Show a => a -> LText

-- | Convert a character to lower case.
--   
--   Character-based case conversion is lossy in comparison to string-based
--   <a>toLower</a>. For instance, 'İ' will be converted to 'i', instead of
--   "i̇".
charToLower :: Char -> Char

-- | Convert a character to upper case.
--   
--   Character-based case conversion is lossy in comparison to string-based
--   <a>toUpper</a>. For instance, 'ß' won't be converted to "SS".
charToUpper :: Char -> Char

-- | Data which can be read to and from files and handles.
--   
--   Note that, for lazy sequences, these operations may perform lazy I/O.
class IsSequence a => IOData a
readFile :: (IOData a, MonadIO m) => FilePath -> m a
writeFile :: (IOData a, MonadIO m) => FilePath -> a -> m ()
getLine :: (IOData a, MonadIO m) => m a
hGetContents :: (IOData a, MonadIO m) => Handle -> m a
hGetLine :: (IOData a, MonadIO m) => Handle -> m a
hPut :: (IOData a, MonadIO m) => Handle -> a -> m ()
hPutStrLn :: (IOData a, MonadIO m) => Handle -> a -> m ()
hGetChunk :: (IOData a, MonadIO m) => Handle -> m a
print :: (Show a, MonadIO m) => a -> m ()

-- | Computation <a>hClose</a> <tt>hdl</tt> makes handle <tt>hdl</tt>
--   closed. Before the computation finishes, if <tt>hdl</tt> is writable
--   its buffer is flushed as for <a>hFlush</a>. Performing <a>hClose</a>
--   on a handle that has already been closed has no effect; doing so is
--   not an error. All other operations on a closed handle will fail. If
--   <a>hClose</a> fails for any reason, any further operations (apart from
--   <a>hClose</a>) on the handle will still fail as if <tt>hdl</tt> had
--   been successfully closed.
hClose :: Handle -> IO ()
fpToString :: FilePath -> String
fpFromString :: String -> FilePath

-- | Translates a FilePath to a Text This translation is not correct for a
--   (unix) filename which can contain arbitrary (non-unicode) bytes: those
--   bytes will be discarded
--   
--   This means you cannot translate the Text back to the original file
--   name.
--   
--   If you control or otherwise understand the filenames and believe them
--   to be unicode valid consider using <a>fpToTextEx</a> or
--   <a>fpToTextWarn</a>
fpToText :: FilePath -> Text
fpFromText :: Text -> FilePath

-- | Translates a FilePath to a Text Warns if there are non-unicode
--   sequences in the file name
fpToTextWarn :: MonadIO m => FilePath -> m Text

-- | Translates a FilePath to a Text Throws an exception if there are
--   non-unicode sequences in the file name
--   
--   Use this to assert that you know a filename will translate properly
--   into a Text If you created the filename, this should be the case.
fpToTextEx :: FilePath -> Text

-- | A class for monads in which exceptions may be thrown.
--   
--   Instances should obey the following law:
--   
--   <pre>
--   throwM e &gt;&gt; x = throwM e
--   </pre>
--   
--   In other words, throwing an exception short-circuits the rest of the
--   monadic computation.
class Monad m => MonadThrow (m :: * -> *)
throwM :: (MonadThrow m, Exception e) => e -> m a
asByteString :: ByteString -> ByteString
asLByteString :: LByteString -> LByteString
asHashMap :: HashMap k v -> HashMap k v
asHashSet :: HashSet a -> HashSet a
asText :: Text -> Text
asLText :: LText -> LText
asList :: [a] -> [a]
asMap :: Map k v -> Map k v
asIntMap :: IntMap v -> IntMap v
asMaybe :: Maybe a -> Maybe a
asSet :: Set a -> Set a
asIntSet :: IntSet -> IntSet
asVector :: Vector a -> Vector a
asUVector :: UVector a -> UVector a
asSVector :: SVector a -> SVector a