This file is indexed.

/usr/include/dune/localfunctions/utility/tensor.hh is in libdune-localfunctions-dev 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_TENSOR_HH
#define DUNE_TENSOR_HH

#include <ostream>
#include <vector>

#include <dune/common/fvector.hh>

#include <dune/localfunctions/utility/field.hh>

namespace Dune
{
  /***********************************************
   * The classes here are work in progress.
   * Basically they provide tensor structures for
   * higher order derivatives of vector valued function.
   * Two storage structures are provided
   * (either based on the components of the vector valued
   * functions or on the order of the derivative).
   * Conversions are supplied between the two storage
   * structures and simple operations, which make the
   * code difficult to use and requires rewritting...
   ***************************************************/

  // Structure for scalar tensor of order deriv
  template <class F,int dimD,unsigned int deriv>
  class LFETensor
  {
    typedef LFETensor<F,dimD,deriv> This;
    typedef LFETensor<F,dimD-1,deriv> BaseDim;
    typedef LFETensor<F,dimD,deriv-1> BaseDeriv;

  public:
    typedef F field_type;
    static const unsigned int size = BaseDim::size+BaseDeriv::size;
    typedef Dune::FieldVector<F,size> Block;

    template< class FF >
    This &operator= ( const FF &f )
    {
      block() = field_cast< F >( f );
      return *this;
    }

    This &operator= ( const Block &b )
    {
      block() = b;
      return *this;
    }

    This &operator*= ( const field_type &f )
    {
      block() *= f;
      return *this;
    }

    const field_type &operator[] ( const unsigned int i ) const
    {
      return block()[ i ];
    }

    field_type &operator[] ( const unsigned int i )
    {
      return block()[ i ];
    }

    Block &block()
    {
      return block_;
    }
    const Block &block() const
    {
      return block_;
    }
    void axpy(const F& a, const This &y)
    {
      block().axpy(a,y.block());
    }
    template <class Fy>
    void assign(const LFETensor<Fy,dimD,deriv> &y)
    {
      field_cast(y.block(),block());
    }
    Block block_;
  };

  // ******************************************
  template <class F,unsigned int deriv>
  struct LFETensor<F,0,deriv>
  {
    static const int size = 0;
  };

  template <class F>
  struct LFETensor<F,0,0>
  {
    static const int size = 1;
  };

  template <class F,int dimD>
  class LFETensor<F,dimD,0>
  {
    typedef LFETensor<F,dimD,0> This;

  public:
    typedef F field_type;
    static const int size = 1;
    typedef Dune::FieldVector<F,size> Block;

    template< class FF >
    This &operator= ( const FF &f )
    {
      block() = field_cast< F >( f );
      return *this;
    }

    This &operator= ( const Block &b )
    {
      block() = b;
      return *this;
    }

    This &operator*= ( const field_type &f )
    {
      block() *= f;
      return *this;
    }

    const F &operator[] ( const unsigned int i ) const
    {
      return block()[ i ];
    }

    F &operator[] ( const unsigned int i )
    {
      return block()[ i ];
    }

    void axpy(const F& a, const This &y)
    {
      block().axpy(a,y.block());
    }
    template <class Fy>
    void assign(const LFETensor<Fy,dimD,0> &y)
    {
      field_cast(y.block(),block());
    }

    Block &block()
    {
      return block_;
    }
    const Block &block() const
    {
      return block_;
    }
    Block block_;
  };
  // ***********************************************************
  // Structure for all derivatives up to order deriv
  // for vector valued function
  enum DerivativeLayout {value,derivative};
  template <class F,int dimD,int dimR,unsigned int deriv,
      DerivativeLayout layout>
  struct Derivatives;

  // Implemnetation for valued based layout
  template <class F,int dimD,int dimR,unsigned int deriv>
  struct Derivatives<F,dimD,dimR,deriv,value>
    : public Derivatives<F,dimD,dimR,deriv-1,value>
  {
    typedef Derivatives<F,dimD,dimR,deriv,value> This;
    typedef Derivatives<F,dimD,dimR,deriv-1,value> Base;
    typedef LFETensor<F,dimD,deriv> ThisLFETensor;

    typedef F Field;
    typedef F field_type;

    static const DerivativeLayout layout = value;
    static const unsigned int dimDomain = dimD;
    static const unsigned int dimRange = dimR;
    // size needs to be an anonymous enum value for gcc 3.4 compatibility
    enum { size = Base::size+ThisLFETensor::size*dimR };
    typedef Dune::FieldVector<F,size> Block;

    This &operator=(const F& f)
    {
      block() = f;
      return *this;
    }
    This &operator=(const Dune::FieldVector<ThisLFETensor,dimR> &t)
    {
      tensor_ = t;
      return *this;
    }
    template <unsigned int dorder>
    This &operator=(const Dune::FieldVector<LFETensor<F,dimD,dorder>,dimR> &t)
    {
      tensor<dorder>() = t;
      return *this;
    }
    This &operator=(const Block &t)
    {
      block() = t;
      return *this;
    }

    This &operator*= ( const field_type &f )
    {
      block() *= f;
      return *this;
    }

    void axpy(const F &a, const This &y)
    {
      block().axpy(a,y.block());
    }

    // assign with same layout (only diffrent Field)
    template <class Fy>
    void assign(const Derivatives<Fy,dimD,dimR,deriv,value> &y)
    {
      field_cast(y.block(),block());
    }
    // assign with diffrent layout (same dimRange)
    template <class Fy>
    void assign(const Derivatives<Fy,dimD,dimR,deriv,derivative> &y)
    {
      Base::assign(y);
      for (int rr=0; rr<dimR; ++rr)
        tensor_[rr] = y[rr].template tensor<deriv>()[0];
    }
    // assign with rth component of function
    template <class Fy,int dimRy>
    void assign(const Derivatives<Fy,dimD,dimRy,deriv,value> &y,unsigned int r)
    {
      assign<Fy,dimRy>(y.block(),r);
    }
    // assign with scalar functions to component r
    template <class Fy>
    void assign(unsigned int r,const Derivatives<Fy,dimD,1,deriv,value> &y)
    {
      assign(r,y.block());
    }
    template <class Fy>
    void assign(unsigned int r,const Derivatives<Fy,dimD,1,deriv,derivative> &y)
    {
      assign(r,y[0]);
    }

    Block &block()
    {
      return reinterpret_cast<Block&>(*this);
    }
    const Block &block() const
    {
      return reinterpret_cast<const Block&>(*this);
    }

    template <unsigned int dorder>
    const Dune::FieldVector<LFETensor<F,dimD,dorder>,dimR> &tensor() const
    {
      // use integral_constant<int,...> here to stay compatible with Int2Type
      const integral_constant<int,dorder> a = {};
      return tensor(a);
    }
    template <unsigned int dorder>
    Dune::FieldVector<LFETensor<F,dimD,dorder>,dimR> &tensor()
    {
      // use integral_constant<int,...> here to stay compatible with Int2Type
      return tensor(integral_constant<int,dorder>());
    }
    template <unsigned int dorder>
    const Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR> &block() const
    {
      // use integral_constant<int,...> here to stay compatible with Int2Type
      const integral_constant<int,dorder> a = {};
      return reinterpret_cast<const Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR>&>(tensor(a));
    }
    template <unsigned int dorder>
    Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR> &block()
    {
      // use integral_constant<int,...> here to stay compatible with Int2Type
      const integral_constant<int,dorder> a = {};
      return reinterpret_cast<Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR>&>(tensor(a));
    }
    ThisLFETensor &operator[](int r) {
      return tensor_[r];
    }
    const ThisLFETensor &operator[](int r) const {
      return tensor_[r];
    }
  protected:
    template <class Fy,int dimRy>
    void assign(const FieldVector<Fy,size*dimRy> &y,unsigned int r)
    {
      Base::template assign<Fy,dimRy>(reinterpret_cast<const FieldVector<Fy,Base::size*dimRy>&>(y),r);
      tensor_[0] = reinterpret_cast<const FieldVector<Fy,ThisLFETensor::size>&>(y[Base::size*dimRy+r*ThisLFETensor::size]);
    }
    template <class Fy>
    void assign(unsigned int r,const FieldVector<Fy,size/dimR> &y)
    {
      Base::assign(r,reinterpret_cast<const FieldVector<Fy,Base::size/dimR>&>(y));
      tensor_[r] = reinterpret_cast<const FieldVector<Fy,ThisLFETensor::size>&>(y[Base::size/dimR]);
    }
    // assign with diffrent layout (same dimRange)
    template <class Fy,unsigned int dy>
    void assign(const Derivatives<Fy,dimD,dimR,dy,derivative> &y)
    {
      Base::assign(y);
      for (int rr=0; rr<dimR; ++rr)
        tensor_[rr] = y[rr].template tensor<deriv>()[0];
    }

    template <int dorder>
    const Dune::FieldVector<LFETensor<F,dimD,dorder>,dimR> &
    tensor(const integral_constant<int,dorder> &dorderVar) const
    {
      return Base::tensor(dorderVar);
    }
    const Dune::FieldVector<LFETensor<F,dimD,deriv>,dimR> &
    tensor(const integral_constant<int,deriv> &dorderVar) const
    {
      return tensor_;
    }
    template <int dorder>
    Dune::FieldVector<LFETensor<F,dimD,dorder>,dimR> &
    tensor(const integral_constant<int,dorder> &dorderVar)
    {
      return Base::tensor(dorderVar);
    }
    Dune::FieldVector<LFETensor<F,dimD,deriv>,dimR> &
    tensor(const integral_constant<int,deriv> &dorderVar)
    {
      return tensor_;
    }
    Dune::FieldVector<ThisLFETensor,dimR> tensor_;
  };

  template <class F,int dimD,int dimR>
  struct Derivatives<F,dimD,dimR,0,value>
  {
    typedef Derivatives<F,dimD,dimR,0,value> This;
    typedef LFETensor<F,dimD,0> ThisLFETensor;

    typedef F Field;
    typedef F field_type;

    static const DerivativeLayout layout = value;
    static const unsigned int dimDomain = dimD;
    static const unsigned int dimRange = dimR;
    // size needs to be an anonymous enum value for gcc 3.4 compatibility
    enum { size = ThisLFETensor::size*dimR };
    typedef Dune::FieldVector<F,size> Block;

    template <class FF>
    This &operator=(const FF& f)
    {
      for (int r=0; r<dimR; ++r)
        tensor_[r] = field_cast<F>(f);
      return *this;
    }
    This &operator=(const Dune::FieldVector<ThisLFETensor,dimR> &t)
    {
      tensor_ = t;
      return *this;
    }

    This &operator=(const Block &t)
    {
      block() = t;
      return *this;
    }

    This &operator*= ( const field_type &f )
    {
      block() *= f;
      return *this;
    }

    void axpy(const F &a, const This &y)
    {
      block().axpy(a,y.block());
    }
    template <class Fy>
    void assign(const Derivatives<Fy,dimD,dimR,0,value> &y)
    {
      field_cast(y.block(),block());
    }
    template <class Fy>
    void assign(const Derivatives<Fy,dimD,dimR,0,derivative> &y)
    {
      for (int rr=0; rr<dimR; ++rr)
        tensor_[rr] = y[rr].template tensor<0>()[0];
    }
    template <class Fy,int dimRy>
    void assign(const Derivatives<Fy,dimD,dimRy,0,value> &y,unsigned int r)
    {
      assign<Fy,dimRy>(y.block(),r);
    }
    template <class Fy>
    void assign(unsigned int r,const Derivatives<Fy,dimD,1,0,value> &y)
    {
      tensor_[r].assign(y[0]);
    }
    template <class Fy>
    void assign(unsigned int r,const Derivatives<Fy,dimD,1,0,derivative> &y)
    {
      tensor_[r].assign(y[0][0]);
    }

    Block &block()
    {
      return reinterpret_cast<Block&>(*this);
    }
    const Block &block() const
    {
      return reinterpret_cast<const Block&>(*this);
    }

    ThisLFETensor &operator[](int r) {
      return tensor_[r];
    }
    const ThisLFETensor &operator[](int r) const {
      return tensor_[r];
    }
    template <int dorder>
    const Dune::FieldVector<LFETensor<F,dimD,0>,dimR> &tensor() const
    {
      return tensor_;
    }
    Dune::FieldVector<LFETensor<F,dimD,0>,dimR> &tensor()
    {
      return tensor_;
    }
    template <unsigned int dorder>
    const Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR> &block() const
    {
      // use integral_constant<int,...> here to stay compatible with Int2Type
      const integral_constant<int,dorder> a = {};
      return reinterpret_cast<const Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR>&>(tensor(a));
    }
    template <unsigned int dorder>
    Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR> &block()
    {
      // use integral_constant<int,...> here to stay compatible with Int2Type
      const integral_constant<int,dorder> a = {};
      return reinterpret_cast<Dune::FieldVector<F,LFETensor<F,dimD,dorder>::size*dimR>&>(tensor(a));
    }

  protected:
    const Dune::FieldVector<LFETensor<F,dimD,0>,dimR> &
    tensor(const integral_constant<int,0> &dorderVar) const
    {
      return tensor_;
    }
    Dune::FieldVector<LFETensor<F,dimD,0>,dimR> &
    tensor(const integral_constant<int,0> &dorderVar)
    {
      return tensor_;
    }
    template <class Fy,unsigned int dy>
    void assign(const Derivatives<Fy,dimD,dimR,dy,derivative> &y)
    {
      for (int rr=0; rr<dimR; ++rr)
        tensor_[rr] = y[rr].template tensor<0>()[0];
    }
    template <class Fy,int dimRy>
    void assign(const FieldVector<Fy,size*dimRy> &y,unsigned int r)
    {
      tensor_[0] = reinterpret_cast<const FieldVector<Fy,ThisLFETensor::size>&>(y[r*ThisLFETensor::size]);
    }
    template <class Fy>
    void assign(unsigned int r,const FieldVector<Fy,size/dimR> &y)
    {
      tensor_[r] = y;
    }
    Dune::FieldVector<ThisLFETensor,dimR> tensor_;
  };

  // Implemnetation for derivative based layout
  template <class F,int dimD,int dimR,unsigned int deriv>
  struct Derivatives<F,dimD,dimR,deriv,derivative>
  {
    typedef Derivatives<F,dimD,dimR,deriv,derivative> This;
    typedef Derivatives<F,dimD,1,deriv,value> ScalarDeriv;

    typedef F Field;
    typedef F field_type;

    static const DerivativeLayout layout = value;
    static const unsigned int dimDomain = dimD;
    static const unsigned int dimRange = dimR;
    // size needs to be an anonymous enum value for gcc 3.4 compatibility
    enum { size = ScalarDeriv::size*dimR };
    typedef Dune::FieldVector<F,size> Block;

    template <class FF>
    This &operator=(const FF& f)
    {
      block() = field_cast<F>(f);
      return *this;
    }
    This &operator=(const Block &t)
    {
      block() = t;
      return *this;
    }

    This &operator*= ( const field_type &f )
    {
      block() *= f;
      return *this;
    }

    template <class FF>
    void axpy(const FF &a, const This &y)
    {
      block().axpy(field_cast<F>(a),y.block());
    }
    // assign with same layout (only diffrent Field)
    template <class Fy>
    void assign(const Derivatives<Fy,dimD,dimR,deriv,derivative> &y)
    {
      field_cast(y.block(),block());
    }
    // assign with diffrent layout (same dimRange)
    template <class Fy>
    void assign(const Derivatives<Fy,dimD,dimR,deriv,value> &y)
    {
      for (unsigned int rr=0; rr<dimR; ++rr)
        deriv_[rr].assign(y,rr);
    }
    // assign with scalar functions to component r
    template <class Fy,DerivativeLayout layouty>
    void assign(unsigned int r,const Derivatives<Fy,dimD,1,deriv,layouty> &y)
    {
      deriv_[r].assign(r,y);
    }

    Block &block()
    {
      return reinterpret_cast<Block&>(*this);
    }
    const Block &block() const
    {
      return reinterpret_cast<const Block&>(*this);
    }

    ScalarDeriv &operator[](int r) {
      return deriv_[r];
    }
    const ScalarDeriv &operator[](int r) const {
      return deriv_[r];
    }
  protected:
    Dune::FieldVector<ScalarDeriv,dimR> deriv_;
  };

  // ******************************************
  // AXPY *************************************
  // ******************************************
  template <class Vec1,class Vec2,unsigned int deriv>
  struct LFETensorAxpy
  {
    template <class Field>
    static void apply(unsigned int r,const Field &a,
                      const Vec1 &x, Vec2 &y)
    {
      y.axpy(a,x);
    }
  };
  template <class F1,int dimD,int dimR,
      unsigned int d,
      class Vec2,
      unsigned int deriv>
  struct LFETensorAxpy<Derivatives<F1,dimD,dimR,d,value>,Vec2,deriv>
  {
    typedef Derivatives<F1,dimD,dimR,d,value> Vec1;
    template <class Field>
    static void apply(unsigned int r,const Field &a,
                      const Vec1 &x, Vec2 &y)
    {
      const FieldVector<F1,Vec2::size> &xx = x.template block<deriv>();
      for (int i=0; i<y.size; ++i)
        y[i] += xx[i]*a;
    }
  };
  template <class F1,int dimD,int dimR,
      unsigned int d,
      class Vec2,
      unsigned int deriv>
  struct LFETensorAxpy<Derivatives<F1,dimD,dimR,d,derivative>,Vec2,deriv>
  {
    typedef Derivatives<F1,dimD,dimR,d,derivative> Vec1;
    template <class Field>
    static void apply(unsigned int r,const Field &a,
                      const Vec1 &x, Vec2 &y)
    {
      for (int rr=0; rr<dimR; ++rr)
        LFETensorAxpy<Derivatives<F1,dimD,1,d,value>,
            Vec2,deriv>::apply(rr,a,x[rr],y);
    }
  };
  template <class F1,int dimD,
      unsigned int d,
      class Vec2,
      unsigned int deriv>
  struct LFETensorAxpy<Derivatives<F1,dimD,1,d,derivative>,Vec2,deriv>
  {
    typedef Derivatives<F1,dimD,1,d,derivative> Vec1;
    template <class Field>
    static void apply(unsigned int r,const Field &a,
                      const Vec1 &x, Vec2 &y)
    {
      LFETensorAxpy<Derivatives<F1,dimD,1,d,value>,
          Vec2,deriv>::apply(r,a,x[0],y);
    }
  };
  template <class F1,int dimD,
      unsigned int d,
      class Vec2,
      unsigned int deriv>
  struct LFETensorAxpy<Derivatives<F1,dimD,1,d,value>,Vec2,deriv>
  {
    typedef Derivatives<F1,dimD,1,d,value> Vec1;
    template <class Field>
    static void apply(unsigned int r,const Field &a,
                      const Vec1 &x, Vec2 &y)
    {
      typedef LFETensor<F1,dimD,deriv> LFETensorType;
      const unsigned int rr = r*LFETensorType::size;
      const FieldVector<F1,LFETensorType::size> &xx = x.template block<deriv>();
      for (int i=0; i<FieldVector<F1,LFETensorType::size>::dimension; ++i)
        y[rr+i] += xx[i]*a;
    }
  };

  // ***********************************************
  // Assign ****************************************
  // ***********************************************
  template <class Vec1,class Vec2>
  struct DerivativeAssign
  {
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1,vec2);
    }
  };
  template <int dimD,int dimR,unsigned int deriv, DerivativeLayout layout,
      class F1,class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,dimR,deriv,layout>,
      Derivatives<F2,dimD,dimR,deriv,layout> >
  {
    typedef Derivatives<F1,dimD,dimR,deriv,layout> Vec1;
    typedef Derivatives<F2,dimD,dimR,deriv,layout> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.block(),vec2.block());
    }
  };
  template <int dimD,int dimR,unsigned int deriv,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,dimR,deriv,value>,
      Derivatives<F2,dimD,dimR,deriv,derivative> >
  {
    typedef Derivatives<F1,dimD,dimR,deriv,value> Vec1;
    typedef Derivatives<F2,dimD,dimR,deriv,derivative> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      vec2.assign(vec1);
    }
  };
  template <int dimD,int dimR,unsigned int deriv,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,dimR,deriv,derivative>,
      Derivatives<F2,dimD,dimR,deriv,value> >
  {
    typedef Derivatives<F1,dimD,dimR,deriv,derivative> Vec1;
    typedef Derivatives<F2,dimD,dimR,deriv,value> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      vec2.assign(vec1);
    }
  };
  template <int dimD,int dimR,unsigned int deriv,DerivativeLayout layout,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,layout>,
      Derivatives<F2,dimD,dimR,deriv,value> >
  {
    typedef Derivatives<F1,dimD,1,deriv,layout> Vec1;
    typedef Derivatives<F2,dimD,dimR,deriv,value> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      vec2.assign(r,vec1);
    }
  };
  template <int dimD,int dimR,unsigned int deriv,DerivativeLayout layout,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,layout>,
      Derivatives<F2,dimD,dimR,deriv,derivative> >
  {
    typedef Derivatives<F1,dimD,1,deriv,layout> Vec1;
    typedef Derivatives<F2,dimD,dimR,deriv,derivative> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      vec2.assign(r,vec1);
    }
  };
  template <int dimD,unsigned int deriv,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,value>,
      Derivatives<F2,dimD,1,deriv,value> >
  {
    typedef Derivatives<F1,dimD,1,deriv,value> Vec1;
    typedef Derivatives<F2,dimD,1,deriv,value> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.block(),vec2.block());
    }
  };
  template <int dimD,unsigned int deriv,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,derivative>,
      Derivatives<F2,dimD,1,deriv,derivative> >
  {
    typedef Derivatives<F1,dimD,1,deriv,derivative> Vec1;
    typedef Derivatives<F2,dimD,1,deriv,derivative> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.block(),vec2.block());
    }
  };
  template <int dimD,unsigned int deriv,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,derivative>,
      Derivatives<F2,dimD,1,deriv,value> >
  {
    typedef Derivatives<F1,dimD,1,deriv,derivative> Vec1;
    typedef Derivatives<F2,dimD,1,deriv,value> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.block(),vec2.block());
    }
  };
  template <int dimD,unsigned int deriv,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,value>,
      Derivatives<F2,dimD,1,deriv,derivative> >
  {
    typedef Derivatives<F1,dimD,1,deriv,value> Vec1;
    typedef Derivatives<F2,dimD,1,deriv,derivative> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.block(),vec2.block());
    }
  };
  template <int dimD,unsigned int deriv,DerivativeLayout layout,
      class F1, class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,layout>,
      F2 >
  {
    typedef Derivatives<F1,dimD,1,deriv,layout> Vec1;
    typedef F2 Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.block(),vec2);
    }
  };
  template <int dimD,int dimR,
      class F1,unsigned int deriv,
      class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,dimR,deriv,value>,FieldVector<F2,dimR> >
  {
    typedef Derivatives<F1,dimD,dimR,deriv,value> Vec1;
    typedef FieldVector<F2,dimR> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.template block<0>(),vec2);
    }
  };
  template <int dimD,int dimR,
      class F1,unsigned int deriv,
      class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,dimR,deriv,derivative>,FieldVector<F2,dimR> >
  {
    typedef Derivatives<F1,dimD,dimR,deriv,derivative> Vec1;
    typedef FieldVector<F2,dimR> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      for (int rr=0; rr<dimR; ++rr)
        field_cast(vec1[rr].template tensor<0>()[0].block(),vec2[rr]);
    }
  };
  template <int dimD,
      class F1,unsigned int deriv,
      class F2,int dimR>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,value>,FieldVector<F2,dimR> >
  {
    typedef Derivatives<F1,dimD,1,deriv,value> Vec1;
    typedef FieldVector<F2,dimR> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.template tensor<0>()[0].block(),vec2[r]);
    }
  };
  template <int dimD,
      class F1,unsigned int deriv,
      class F2,int dimR>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,derivative>,FieldVector<F2,dimR> >
  {
    typedef Derivatives<F1,dimD,1,deriv,derivative> Vec1;
    typedef FieldVector<F2,dimR> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1[0].template tensor<0>()[0].block(),vec2[r]);
    }
  };
  template <int dimD,
      class F1,unsigned int deriv,
      class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,value>,FieldVector<F2,1> >
  {
    typedef Derivatives<F1,dimD,1,deriv,value> Vec1;
    typedef FieldVector<F2,1> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1.template tensor<0>()[0].block(),vec2);
    }
  };
  template <int dimD,
      class F1,unsigned int deriv,
      class F2>
  struct DerivativeAssign<Derivatives<F1,dimD,1,deriv,derivative>,FieldVector<F2,1> >
  {
    typedef Derivatives<F1,dimD,1,deriv,derivative> Vec1;
    typedef FieldVector<F2,1> Vec2;
    static void apply(unsigned int r,const Vec1 &vec1,Vec2 &vec2)
    {
      field_cast(vec1[0].template tensor<0>()[0].block(),vec2);
    }
  };

  // ***********************************************
  // IO ********************************************
  // ***********************************************
  template <class F,int dimD,unsigned int deriv>
  std::ostream &operator<< ( std::ostream &out, const LFETensor< F,dimD,deriv > &tensor )
  {
    return out << tensor.block();
  }
#if 0
  template <class F,int dimD,unsigned int deriv>
  std::ostream &operator<< ( std::ostream &out, const ScalarDerivatives< F,dimD,deriv > &d )
  {
    out << static_cast<const ScalarDerivatives< F,dimD,deriv-1 > &>(d);
    out << " , " << d.tensor() << std::endl;
    return out;
  }
  template <class F,int dimD>
  std::ostream &operator<< ( std::ostream &out, const ScalarDerivatives< F,dimD,0 > &d )
  {
    out << d.tensor() << std::endl;
    return out;
  }
#endif
  template <class F,int dimD,int dimR,unsigned int deriv>
  std::ostream &operator<< ( std::ostream &out, const Derivatives< F,dimD,dimR,deriv,derivative > &d )
  {
    out << " ( ";
    out << d[0];
    for (int r=1; r<dimR; ++r)
    {
      out << " , " << d[r];
    }
    out << " ) " << std::endl;
    return out;
  }
  template <class F,int dimD,int dimR,unsigned int deriv>
  std::ostream &operator<< ( std::ostream &out, const Derivatives< F,dimD,dimR,deriv,value > &d )
  {
    out << static_cast<const Derivatives< F,dimD,dimR,deriv-1,value > &>(d);
    out << " ( ";
    out << d[0];
    for (int r=1; r<dimR; ++r)
    {
      out << " , " << d[r];
    }
    out << " ) " << std::endl;
    return out;
  }
  template <class F,int dimD,int dimR>
  std::ostream &operator<< ( std::ostream &out, const Derivatives< F,dimD,dimR,0,derivative > &d )
  {
    out << " ( ";
    out << d[0];
    for (int r=1; r<dimR; ++r)
    {
      out << " , " << d[r];
    }
    out << " ) " << std::endl;
    return out;
  }
  template <class F,int dimD,int dimR>
  std::ostream &operator<< ( std::ostream &out, const Derivatives< F,dimD,dimR,0,value > &d )
  {
    out << " ( ";
    out << d[0];
    for (int r=1; r<dimR; ++r)
    {
      out << " , " << d[r];
    }
    out << " ) " << std::endl;
    return out;
  }
  template <class F,int dimD,int dimR,unsigned int deriv,DerivativeLayout layout>
  std::ostream &operator<< ( std::ostream &out, const std::vector<Derivatives< F,dimD,dimR,deriv,layout > > &y )
  {
    out << "Number of basis functions: " << y.size() << std::endl;
    for (unsigned int i=0; i<y.size(); ++i)
    {
      out << "Base " << i << " : " << std::endl;
      out << y[i];
      out << std::endl;
    }
    return out;
  }
}
#endif // DUNE_TENSOR_HH