This file is indexed.

/usr/include/dune/localfunctions/raviartthomas/raviartthomas2cube2d/raviartthomas2cube2dlocalinterpolation.hh is in libdune-localfunctions-dev 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH
#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH

#include <vector>

#include <dune/geometry/quadraturerules.hh>

namespace Dune
{

  /**
   * \ingroup LocalInterpolationImplementation
   * \brief Second order Raviart-Thomas shape functions on the reference triangle.
   *
   * \tparam LB corresponding LocalBasis giving traits
   *
   * \nosubgrouping
   */
  template<class LB>
  class RT2Cube2DLocalInterpolation
  {

  public:
    //! \brief Standard constructor
    RT2Cube2DLocalInterpolation ()
    {
      sign0 = sign1 = sign2 = sign3 = 1.0;
    }

    /**
     * \brief Make set number s, where 0 <= s < 8
     *
     * \param s Edge orientation indicator
     */
    RT2Cube2DLocalInterpolation (unsigned int s)
    {
      sign0 = sign1 = sign2 = sign3 = 1.0;
      if (s & 1)
      {
        sign0 *= -1.0;
      }
      if (s & 2)
      {
        sign1 *= -1.0;
      }
      if (s & 4)
      {
        sign2 *= -1.0;
      }
      if (s & 8)
      {
        sign3 *= -1.0;
      }

      n0[0] = -1.0;
      n0[1] =  0.0;
      n1[0] =  1.0;
      n1[1] =  0.0;
      n2[0] =  0.0;
      n2[1] = -1.0;
      n3[0] =  0.0;
      n3[1] =  1.0;
    }

    /**
     * \brief Interpolate a given function with shape functions
     *
     * \tparam F Function type for function which should be interpolated
     * \tparam C Coefficient type
     * \param f function which should be interpolated
     * \param out return value, vector of coefficients
     */
    template<typename F, typename C>
    void interpolate (const F& f, std::vector<C>& out) const
    {
      // f gives v*outer normal at a point on the edge!
      typedef typename LB::Traits::RangeFieldType Scalar;
      typedef typename LB::Traits::DomainFieldType Vector;
      typename F::Traits::RangeType y;

      out.resize(24);
      fill(out.begin(), out.end(), 0.0);

      const int qOrder = 6;
      const QuadratureRule<Scalar,1>& rule = QuadratureRules<Scalar,1>::rule(GeometryType(GeometryType::cube,1), qOrder);

      for (typename QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
      {
        Scalar qPos = it->position();
        typename LB::Traits::DomainType localPos;

        localPos[0] = 0.0;
        localPos[1] = qPos;
        f.evaluate(localPos, y);
        out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
        out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
        out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0;

        localPos[0] = 1.0;
        localPos[1] = qPos;
        f.evaluate(localPos, y);
        out[3] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1;
        out[4] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
        out[5] += (y[0]*n1[0] + y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1;

        localPos[0] = qPos;
        localPos[1] = 0.0;
        f.evaluate(localPos, y);
        out[6] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
        out[7] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
        out[8] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2;

        localPos[0] = qPos;
        localPos[1] = 1.0;
        f.evaluate(localPos, y);
        out[9]  += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
        out[10] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
        out[11] += (y[0]*n3[0] + y[1]*n3[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign3;
      }

      const QuadratureRule<Vector,2>& rule2 = QuadratureRules<Vector,2>::rule(GeometryType(GeometryType::cube,2), qOrder);

      for (typename QuadratureRule<Vector,2>::const_iterator it = rule2.begin();
           it != rule2.end(); ++it)
      {
        FieldVector<double,2> qPos = it->position();

        f.evaluate(qPos, y);
        out[12] += y[0]*it->weight();
        out[13] += y[1]*it->weight();
        out[14] += y[0]*qPos[0]*it->weight();
        out[15] += y[1]*qPos[0]*it->weight();
        out[16] += y[0]*qPos[1]*it->weight();
        out[17] += y[1]*qPos[1]*it->weight();
        out[18] += y[0]*qPos[0]*qPos[1]*it->weight();
        out[19] += y[1]*qPos[0]*qPos[1]*it->weight();
        out[20] += y[0]*qPos[1]*qPos[1]*it->weight();
        out[21] += y[1]*qPos[0]*qPos[0]*it->weight();
        out[22] += y[0]*qPos[0]*qPos[1]*qPos[1]*it->weight();
        out[23] += y[1]*qPos[0]*qPos[0]*qPos[1]*it->weight();
      }
    }

  private:
    typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
    typename LB::Traits::DomainType n0, n1, n2, n3;
  };
}
#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS2_CUBE2D_LOCALINTERPOLATION_HH