This file is indexed.

/usr/include/asio/basic_waitable_timer.hpp is in libasio-dev 1:1.10.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
//
// basic_waitable_timer.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#ifndef ASIO_BASIC_WAITABLE_TIMER_HPP
#define ASIO_BASIC_WAITABLE_TIMER_HPP

#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)

#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/basic_io_object.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/wait_traits.hpp"
#include "asio/waitable_timer_service.hpp"

#include "asio/detail/push_options.hpp"

namespace asio {

/// Provides waitable timer functionality.
/**
 * The basic_waitable_timer class template provides the ability to perform a
 * blocking or asynchronous wait for a timer to expire.
 *
 * A waitable timer is always in one of two states: "expired" or "not expired".
 * If the wait() or async_wait() function is called on an expired timer, the
 * wait operation will complete immediately.
 *
 * Most applications will use one of the asio::steady_timer,
 * asio::system_timer or asio::high_resolution_timer typedefs.
 *
 * @note This waitable timer functionality is for use with the C++11 standard
 * library's @c &lt;chrono&gt; facility, or with the Boost.Chrono library.
 *
 * @par Thread Safety
 * @e Distinct @e objects: Safe.@n
 * @e Shared @e objects: Unsafe.
 *
 * @par Examples
 * Performing a blocking wait (C++11):
 * @code
 * // Construct a timer without setting an expiry time.
 * asio::steady_timer timer(io_service);
 *
 * // Set an expiry time relative to now.
 * timer.expires_from_now(std::chrono::seconds(5));
 *
 * // Wait for the timer to expire.
 * timer.wait();
 * @endcode
 *
 * @par 
 * Performing an asynchronous wait (C++11):
 * @code
 * void handler(const asio::error_code& error)
 * {
 *   if (!error)
 *   {
 *     // Timer expired.
 *   }
 * }
 *
 * ...
 *
 * // Construct a timer with an absolute expiry time.
 * asio::steady_timer timer(io_service,
 *     std::chrono::steady_clock::now() + std::chrono::seconds(60));
 *
 * // Start an asynchronous wait.
 * timer.async_wait(handler);
 * @endcode
 *
 * @par Changing an active waitable timer's expiry time
 *
 * Changing the expiry time of a timer while there are pending asynchronous
 * waits causes those wait operations to be cancelled. To ensure that the action
 * associated with the timer is performed only once, use something like this:
 * used:
 *
 * @code
 * void on_some_event()
 * {
 *   if (my_timer.expires_from_now(seconds(5)) > 0)
 *   {
 *     // We managed to cancel the timer. Start new asynchronous wait.
 *     my_timer.async_wait(on_timeout);
 *   }
 *   else
 *   {
 *     // Too late, timer has already expired!
 *   }
 * }
 *
 * void on_timeout(const asio::error_code& e)
 * {
 *   if (e != asio::error::operation_aborted)
 *   {
 *     // Timer was not cancelled, take necessary action.
 *   }
 * }
 * @endcode
 *
 * @li The asio::basic_waitable_timer::expires_from_now() function
 * cancels any pending asynchronous waits, and returns the number of
 * asynchronous waits that were cancelled. If it returns 0 then you were too
 * late and the wait handler has already been executed, or will soon be
 * executed. If it returns 1 then the wait handler was successfully cancelled.
 *
 * @li If a wait handler is cancelled, the asio::error_code passed to
 * it contains the value asio::error::operation_aborted.
 */
template <typename Clock,
    typename WaitTraits = asio::wait_traits<Clock>,
    typename WaitableTimerService = waitable_timer_service<Clock, WaitTraits> >
class basic_waitable_timer
  : public basic_io_object<WaitableTimerService>
{
public:
  /// The clock type.
  typedef Clock clock_type;

  /// The duration type of the clock.
  typedef typename clock_type::duration duration;

  /// The time point type of the clock.
  typedef typename clock_type::time_point time_point;

  /// The wait traits type.
  typedef WaitTraits traits_type;

  /// Constructor.
  /**
   * This constructor creates a timer without setting an expiry time. The
   * expires_at() or expires_from_now() functions must be called to set an
   * expiry time before the timer can be waited on.
   *
   * @param io_service The io_service object that the timer will use to dispatch
   * handlers for any asynchronous operations performed on the timer.
   */
  explicit basic_waitable_timer(asio::io_service& io_service)
    : basic_io_object<WaitableTimerService>(io_service)
  {
  }

  /// Constructor to set a particular expiry time as an absolute time.
  /**
   * This constructor creates a timer and sets the expiry time.
   *
   * @param io_service The io_service object that the timer will use to dispatch
   * handlers for any asynchronous operations performed on the timer.
   *
   * @param expiry_time The expiry time to be used for the timer, expressed
   * as an absolute time.
   */
  basic_waitable_timer(asio::io_service& io_service,
      const time_point& expiry_time)
    : basic_io_object<WaitableTimerService>(io_service)
  {
    asio::error_code ec;
    this->service.expires_at(this->implementation, expiry_time, ec);
    asio::detail::throw_error(ec, "expires_at");
  }

  /// Constructor to set a particular expiry time relative to now.
  /**
   * This constructor creates a timer and sets the expiry time.
   *
   * @param io_service The io_service object that the timer will use to dispatch
   * handlers for any asynchronous operations performed on the timer.
   *
   * @param expiry_time The expiry time to be used for the timer, relative to
   * now.
   */
  basic_waitable_timer(asio::io_service& io_service,
      const duration& expiry_time)
    : basic_io_object<WaitableTimerService>(io_service)
  {
    asio::error_code ec;
    this->service.expires_from_now(this->implementation, expiry_time, ec);
    asio::detail::throw_error(ec, "expires_from_now");
  }

  /// Cancel any asynchronous operations that are waiting on the timer.
  /**
   * This function forces the completion of any pending asynchronous wait
   * operations against the timer. The handler for each cancelled operation will
   * be invoked with the asio::error::operation_aborted error code.
   *
   * Cancelling the timer does not change the expiry time.
   *
   * @return The number of asynchronous operations that were cancelled.
   *
   * @throws asio::system_error Thrown on failure.
   *
   * @note If the timer has already expired when cancel() is called, then the
   * handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t cancel()
  {
    asio::error_code ec;
    std::size_t s = this->service.cancel(this->implementation, ec);
    asio::detail::throw_error(ec, "cancel");
    return s;
  }

  /// Cancel any asynchronous operations that are waiting on the timer.
  /**
   * This function forces the completion of any pending asynchronous wait
   * operations against the timer. The handler for each cancelled operation will
   * be invoked with the asio::error::operation_aborted error code.
   *
   * Cancelling the timer does not change the expiry time.
   *
   * @param ec Set to indicate what error occurred, if any.
   *
   * @return The number of asynchronous operations that were cancelled.
   *
   * @note If the timer has already expired when cancel() is called, then the
   * handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t cancel(asio::error_code& ec)
  {
    return this->service.cancel(this->implementation, ec);
  }

  /// Cancels one asynchronous operation that is waiting on the timer.
  /**
   * This function forces the completion of one pending asynchronous wait
   * operation against the timer. Handlers are cancelled in FIFO order. The
   * handler for the cancelled operation will be invoked with the
   * asio::error::operation_aborted error code.
   *
   * Cancelling the timer does not change the expiry time.
   *
   * @return The number of asynchronous operations that were cancelled. That is,
   * either 0 or 1.
   *
   * @throws asio::system_error Thrown on failure.
   *
   * @note If the timer has already expired when cancel_one() is called, then
   * the handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t cancel_one()
  {
    asio::error_code ec;
    std::size_t s = this->service.cancel_one(this->implementation, ec);
    asio::detail::throw_error(ec, "cancel_one");
    return s;
  }

  /// Cancels one asynchronous operation that is waiting on the timer.
  /**
   * This function forces the completion of one pending asynchronous wait
   * operation against the timer. Handlers are cancelled in FIFO order. The
   * handler for the cancelled operation will be invoked with the
   * asio::error::operation_aborted error code.
   *
   * Cancelling the timer does not change the expiry time.
   *
   * @param ec Set to indicate what error occurred, if any.
   *
   * @return The number of asynchronous operations that were cancelled. That is,
   * either 0 or 1.
   *
   * @note If the timer has already expired when cancel_one() is called, then
   * the handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t cancel_one(asio::error_code& ec)
  {
    return this->service.cancel_one(this->implementation, ec);
  }

  /// Get the timer's expiry time as an absolute time.
  /**
   * This function may be used to obtain the timer's current expiry time.
   * Whether the timer has expired or not does not affect this value.
   */
  time_point expires_at() const
  {
    return this->service.expires_at(this->implementation);
  }

  /// Set the timer's expiry time as an absolute time.
  /**
   * This function sets the expiry time. Any pending asynchronous wait
   * operations will be cancelled. The handler for each cancelled operation will
   * be invoked with the asio::error::operation_aborted error code.
   *
   * @param expiry_time The expiry time to be used for the timer.
   *
   * @return The number of asynchronous operations that were cancelled.
   *
   * @throws asio::system_error Thrown on failure.
   *
   * @note If the timer has already expired when expires_at() is called, then
   * the handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t expires_at(const time_point& expiry_time)
  {
    asio::error_code ec;
    std::size_t s = this->service.expires_at(
        this->implementation, expiry_time, ec);
    asio::detail::throw_error(ec, "expires_at");
    return s;
  }

  /// Set the timer's expiry time as an absolute time.
  /**
   * This function sets the expiry time. Any pending asynchronous wait
   * operations will be cancelled. The handler for each cancelled operation will
   * be invoked with the asio::error::operation_aborted error code.
   *
   * @param expiry_time The expiry time to be used for the timer.
   *
   * @param ec Set to indicate what error occurred, if any.
   *
   * @return The number of asynchronous operations that were cancelled.
   *
   * @note If the timer has already expired when expires_at() is called, then
   * the handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t expires_at(const time_point& expiry_time,
      asio::error_code& ec)
  {
    return this->service.expires_at(this->implementation, expiry_time, ec);
  }

  /// Get the timer's expiry time relative to now.
  /**
   * This function may be used to obtain the timer's current expiry time.
   * Whether the timer has expired or not does not affect this value.
   */
  duration expires_from_now() const
  {
    return this->service.expires_from_now(this->implementation);
  }

  /// Set the timer's expiry time relative to now.
  /**
   * This function sets the expiry time. Any pending asynchronous wait
   * operations will be cancelled. The handler for each cancelled operation will
   * be invoked with the asio::error::operation_aborted error code.
   *
   * @param expiry_time The expiry time to be used for the timer.
   *
   * @return The number of asynchronous operations that were cancelled.
   *
   * @throws asio::system_error Thrown on failure.
   *
   * @note If the timer has already expired when expires_from_now() is called,
   * then the handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t expires_from_now(const duration& expiry_time)
  {
    asio::error_code ec;
    std::size_t s = this->service.expires_from_now(
        this->implementation, expiry_time, ec);
    asio::detail::throw_error(ec, "expires_from_now");
    return s;
  }

  /// Set the timer's expiry time relative to now.
  /**
   * This function sets the expiry time. Any pending asynchronous wait
   * operations will be cancelled. The handler for each cancelled operation will
   * be invoked with the asio::error::operation_aborted error code.
   *
   * @param expiry_time The expiry time to be used for the timer.
   *
   * @param ec Set to indicate what error occurred, if any.
   *
   * @return The number of asynchronous operations that were cancelled.
   *
   * @note If the timer has already expired when expires_from_now() is called,
   * then the handlers for asynchronous wait operations will:
   *
   * @li have already been invoked; or
   *
   * @li have been queued for invocation in the near future.
   *
   * These handlers can no longer be cancelled, and therefore are passed an
   * error code that indicates the successful completion of the wait operation.
   */
  std::size_t expires_from_now(const duration& expiry_time,
      asio::error_code& ec)
  {
    return this->service.expires_from_now(
        this->implementation, expiry_time, ec);
  }

  /// Perform a blocking wait on the timer.
  /**
   * This function is used to wait for the timer to expire. This function
   * blocks and does not return until the timer has expired.
   *
   * @throws asio::system_error Thrown on failure.
   */
  void wait()
  {
    asio::error_code ec;
    this->service.wait(this->implementation, ec);
    asio::detail::throw_error(ec, "wait");
  }

  /// Perform a blocking wait on the timer.
  /**
   * This function is used to wait for the timer to expire. This function
   * blocks and does not return until the timer has expired.
   *
   * @param ec Set to indicate what error occurred, if any.
   */
  void wait(asio::error_code& ec)
  {
    this->service.wait(this->implementation, ec);
  }

  /// Start an asynchronous wait on the timer.
  /**
   * This function may be used to initiate an asynchronous wait against the
   * timer. It always returns immediately.
   *
   * For each call to async_wait(), the supplied handler will be called exactly
   * once. The handler will be called when:
   *
   * @li The timer has expired.
   *
   * @li The timer was cancelled, in which case the handler is passed the error
   * code asio::error::operation_aborted.
   *
   * @param handler The handler to be called when the timer expires. Copies
   * will be made of the handler as required. The function signature of the
   * handler must be:
   * @code void handler(
   *   const asio::error_code& error // Result of operation.
   * ); @endcode
   * Regardless of whether the asynchronous operation completes immediately or
   * not, the handler will not be invoked from within this function. Invocation
   * of the handler will be performed in a manner equivalent to using
   * asio::io_service::post().
   */
  template <typename WaitHandler>
  ASIO_INITFN_RESULT_TYPE(WaitHandler,
      void (asio::error_code))
  async_wait(ASIO_MOVE_ARG(WaitHandler) handler)
  {
    // If you get an error on the following line it means that your handler does
    // not meet the documented type requirements for a WaitHandler.
    ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;

    return this->service.async_wait(this->implementation,
        ASIO_MOVE_CAST(WaitHandler)(handler));
  }
};

} // namespace asio

#include "asio/detail/pop_options.hpp"

#endif // ASIO_BASIC_WAITABLE_TIMER_HPP