This file is indexed.

/usr/share/hol88-2.02.19940316/ml/drul.ml is in hol88-source 2.02.19940316-28.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
%=============================================================================%
%                               HOL 88 Version 2.0                            %
%                                                                             %
%     FILE NAME:        drul.ml                                               %
%                                                                             %
%     DESCRIPTION:      This file contains what used to be in drul.ml and     %
%                       pplemmas.ml                                           %
%                                                                             %
%     USES FILES:       basic-hol lisp files, bool.th, genfns.ml, hol-syn.ml, %
%                       hol-rule.ml, hol-drule.ml                             %
%                                                                             %
%                       University of Cambridge                               %
%                       Hardware Verification Group                           %
%                       Computer Laboratory                                   %
%                       New Museums Site                                      %
%                       Pembroke Street                                       %
%                       Cambridge  CB2 3QG                                    %
%                       England                                               %
%                                                                             %
%     COPYRIGHT:        University of Edinburgh                               %
%     COPYRIGHT:        University of Cambridge                               %
%     COPYRIGHT:        INRIA                                                 %
%                                                                             %
%     REVISION HISTORY: (none)                                                %
%=============================================================================%

% --------------------------------------------------------------------- %
% Must be compiled in the presence of the hol parser/pretty printer	%
% This loads genfns.ml and hol-syn.ml too.				%
% Also depends on hol-rule.ml, and hol-drule.ml				%
% --------------------------------------------------------------------- %

if compiling then  (loadf `ml/hol-in-out`;
		    loadf `ml/hol-rule`;
		    loadf `ml/hol-drule`);;

%
Generalise a theorem over all variables free in conclusion but not in hyps

         A |- t[x1,...,xn]
    ----------------------------
     A |- !x1...xn.t[x1,...,xn]
%

let GEN_ALL th =
    itlist GEN (subtract (frees(concl th)) (freesl (hyp th))) th;;


%
Discharge all hypotheses 

      A, t1, ... , tn |- t
-------------------------------
 A  |- t1 ==> ... ==> tn ==> t


You can write a simpler version using "itlist DISCH (hyp th) th", but this
may discharge two equivalent (alpha-convertible) assumptions.
%

letrec DISCH_ALL th =  DISCH_ALL (DISCH (hd (hyp th)) th)  ?  th;;

%  |- !x. t    ---->    x', |- t[x'/x]		%

let SPEC_VAR th =
    let bv,() = dest_forall (concl th) in
    let bv' = variant (freesl (hyp th)) bv  in   
    bv', SPEC bv' th;;



%
      A |- t1 ==> ... ==> tn ==> t
    -------------------------------
	 A, t1, ..., tn |- t
%

letrec UNDISCH_ALL th =
    if is_imp (concl th)  then  UNDISCH_ALL (UNDISCH th)
    else th;;

% --------------------------------------------------------------------- %
% SPEC_ALL : thm -> thm							%
%									%
%     A |- !x1 ... xn. t[xi]						%
%    ------------------------   where the xi' are distinct 		%
%        A |- t[xi'/xi]		and not free in the input theorem	%
%									%
% BUGFIX: added the "distinct" part and code to make the xi's not free  %
% in the conclusion !x1...xn.t[xi].		        [TFM 90.10.04]	%
%									%
% OLD CODE:								%
% 									%
% let SPEC_ALL th =							%
%     let vars,() = strip_forall(concl th) in				%
%     SPECL (map (variant (freesl (hyp th))) vars) th;;			%
% --------------------------------------------------------------------- %

let SPEC_ALL =
    let f v (vs,l) = let v' = variant vs v in (v'.vs,v'.l) in
    \th. let hvs,con = (freesl # I) (dest_thm th) in
         let fvs = frees con and vars = fst(strip_forall con) in
         SPECL (snd(itlist f vars (hvs @ fvs,[]))) th;;


%
Use the conclusion of ath to delete a hypothesis of bth

    A |- t1 	B, t1 |- t2
    -----------------------
         A u B |- t2
%

let PROVE_HYP ath bth =  MP (DISCH (concl ath) bth) ath;;


% --------------------------------------------------------------------- %
% A |- t1/\t2  ---> A |- t1, A |- t2 					%
% New failure string added.				[TFM 90.05.06]	%
% --------------------------------------------------------------------- %

let CONJ_PAIR th = 
    (CONJUNCT1 th, CONJUNCT2 th) ? 
     failwith `CONJ_PAIR: input thm not a conjunction`;;

% ["A1|-t1"; ...; "An|-tn"]  ---> "A1u...uAn|-t1 /\ ... /\ tn", where n>0   %

let LIST_CONJ = end_itlist CONJ ;;

%
"A |- t1 /\ (...(... /\ tn)...)"   --->  [ "A|-t1"; ...; "A|-tn"],  where n>0 

Inverse of LIST_CONJ : flattens only right conjuncts.
You must specify n, since tn could itself be a conjunction
%

letrec CONJ_LIST n th =
    if n=1 then [th]
    else 
    CONJUNCT1 th . (CONJ_LIST (n-1) (CONJUNCT2 th)) 
    ? failwith `CONJ_LIST`;;

% --------------------------------------------------------------------- %
% CONJUNCTS:								%
%									%
%   "A |- t1 /\ ... /\ tn"  --->  [ "A|-t1"; ...; "A|-tn"],  where n>0	%
%									%
% Flattens out all conjuncts, regardless of grouping			%
% --------------------------------------------------------------------- %

letrec CONJUNCTS th = 
      (CONJUNCTS (CONJUNCT1 th) @ CONJUNCTS(CONJUNCT2 th)) ? [th];;

%
"|- !x. (t1 /\ ...) /\ ... (!y. ... /\ tn)" 
   --->  [ "|-t1"; ...; "|-tn"],  where n>0 

Flattens out conjuncts even in bodies of forall's
%

letrec BODY_CONJUNCTS th =
    if is_forall (concl th)  then  BODY_CONJUNCTS (SPEC_ALL th)
    if is_conj (concl th) then
    	BODY_CONJUNCTS (CONJUNCT1 th) @ BODY_CONJUNCTS (CONJUNCT2 th)
    else [th];;

% --------------------------------------------------------------------- %
% IMP_CANON Puts a theorem 						%
%									%
%	 |- !x. t1 ==> !y. t2 ==> ... ==> tm ==>  t 			%
%									%
% into canonical form by stripping out quantifiers and splitting	%
% conjunctions apart.							%
%									%
%	t1 /\ t2	--->		t1,   t2			%
%	(t1/\t2)==>t	--->		t1==> (t2==>t)			%
%	(t1\/t2)==>t	--->		t1==>t, t2==>t			%
%	(?x.t1)==>t2	--->		t1[x'/x] ==> t2			%
%	!x.t1		--->		t1[x'/x]			%
%       (?x.t1)==>t2    --->            t1[x'/x] ==> t2)		%
%									%
% --------------------------------------------------------------------- %

letrec IMP_CANON th =
    let w = concl th in
    if is_conj w then IMP_CANON (CONJUNCT1 th) @ IMP_CANON (CONJUNCT2 th)
    else if is_imp w then
	let ante,conc = dest_neg_imp w in
	if is_conj ante then
	    let a,b = dest_conj ante in
	    IMP_CANON 
	    (DISCH a (DISCH b (NOT_MP th (CONJ (ASSUME a) (ASSUME b)))))
	else if is_disj ante then
	    let a,b = dest_disj ante in
	    IMP_CANON (DISCH a (NOT_MP th (DISJ1 (ASSUME a) b))) @
	    IMP_CANON (DISCH b (NOT_MP th (DISJ2 a (ASSUME b))))
	else if is_exists ante then
	    let x,body = dest_exists ante in
	    let x' = variant (thm_frees th) x in
	    let body' = subst [x',x] body in
	    IMP_CANON 
	    (DISCH body' (NOT_MP th (EXISTS (ante, x') (ASSUME body'))))
	else
	map (DISCH ante) (IMP_CANON (UNDISCH th))
    else if is_forall w then
	IMP_CANON (SPEC_ALL th)
    else [th];;							


%

 A1 |- t1   ...   An |- tn      A |- t1==>...==>tn==>t
 -----------------------------------------------------
            A u A1 u ... u An |- t
%

let LIST_MP  = rev_itlist (\x y.MP y x) ;;

%
      A |-t1 ==> t2
    -----------------
    A |-  ~t2 ==> ~t1

(Rewritten by MJCG to return "~t2 ==> ~t1" rather than "~t2 ==> t1 ==>F")
%

let CONTRAPOS impth =
 (let a,b = dest_imp (concl impth) 
  in
  let notb = "~ ^b" 
  in
  DISCH
   notb
   (EQ_MP
    (el 5 (CONJUNCTS (SPEC a IMP_CLAUSES)))
    (DISCH a (NOT_MP (ASSUME notb) (MP impth (ASSUME a)))))
 ) ? failwith `CONTRAPOS`;;

%
       A |- t1 \/ t2
    --------------------
     A |-  ~ t1 ==> t2
%

let DISJ_IMP dth =
 (let a,b = dest_disj (concl dth)
  in
  let nota = "~ ^a"
  in
  DISCH nota 
   (DISJ_CASES dth 
    (CONTR b (NOT_MP (ASSUME nota) (ASSUME a)))
    (ASSUME b))
 ) ? failwith `DISJ_IMP`;;

%
   A |- t1 ==> t2
  ---------------
   A |- ~t1 \/ t2
%

let IMP_ELIM th =
 (let t1,t2 = dest_imp (snd (dest_thm th))
  in
  DISJ_CASES
   (SPEC t1 EXCLUDED_MIDDLE)
   (DISJ2 "~^t1" (MP th (ASSUME t1)))
   (DISJ1 (ASSUME "~^t1") t2)
 ) ? failwith `IMP_ELIM`;;

% --------------------------------------------------------------------- %
% NOT_CLAUSES = |- (~~t = t) /\ (~T = F) /\ (~F = T) 			%
% --------------------------------------------------------------------- %

let NOT_CLAUSES =
 (CONJ
  (GEN "t:bool"
    (IMP_ANTISYM_RULE
      (DISJ_IMP(IMP_ELIM(DISCH "t:bool" (ASSUME "t:bool"))))
      (DISCH "t:bool"
       (NOT_INTRO(DISCH "~t" (UNDISCH (NOT_ELIM(ASSUME "~t"))))))))
  (CONJ
   (IMP_ANTISYM_RULE
    (DISCH "~T" (MP (MP (SPEC "T" F_IMP) (ASSUME "~T")) TRUTH))
    (SPEC "~T" FALSITY))
   (IMP_ANTISYM_RULE
    (DISCH "~F" TRUTH)
    (DISCH "T" (MP (SPEC "F" IMP_F) (SPEC "F" FALSITY))))));;

% --------------------------------------------------------------------- %
%   A |- t1 \/ t2     A1, t1 |- t3      A2, t2 |- t4			%
%   ------------------------------------------------			%
%               A u A1 u A2 |- t3 \/ t4					%
% --------------------------------------------------------------------- %

let DISJ_CASES_UNION dth ath bth =
    DISJ_CASES dth (DISJ1 ath (concl bth)) (DISJ2 (concl ath) bth);;

% --------------------------------------------------------------------- %
% FORWARD CHAINING: (from LCF)				 [TFM 90.04.24] %
%									%
% deleted until found useful and properly reimplemented for HOL.	%
%									%
% Forward chain using an inference rule on top-level sub-parts of a 	%
% theorem. Could be extended to handle other connectives		%
%									%
% let SUB_CHAIN rule th =						%
%    let w = concl th in						%
%    if is_conj w then 							%
% 	CONJ (rule(CONJUNCT1 th)) (rule(CONJUNCT2 th))			%
%    else if is_disj w then						%
%	let a,b = dest_disj w in					%
% 	DISJ_CASES_UNION th (rule (ASSUME a)) (rule (ASSUME b))		%
%    else if is_imp w then						%
%	let a,b = dest_imp w in						%
% 	DISCH a (rule (UNDISCH th))					%
%    else if is_forall w then						%
%	let x', sth = SPEC_VAR th in					%
%	GEN x' (rule sth)						%
%    else th;;								%
%									%
% Repeatedly apply the rule (looping if it never fails)			%
%									%
% letrec REDEPTH_CHAIN rule x =						%
%    (SUB_CHAIN (REDEPTH_CHAIN rule) thenf				%
%    ((rule thenf (REDEPTH_CHAIN rule)) orelsef I))			%
%   x;;									%
%									%
% Apply the rule no more than once in any one place			%
%									%
%letrec ONCE_DEPTH_CHAIN rule x =					%
%   (rule  orelsef  SUB_CHAIN (ONCE_DEPTH_CHAIN rule))			%
%   x;;									%
%									%
% DSPEC : Specialize a theorem whose quantifiers are buried inside	%
%									%
% let DSPEC x = ONCE_DEPTH_CHAIN (SPEC x);;				%
% let DSPECL = rev_itlist DSPEC;;					%
%									%
% --------------------------------------------------------------------- %

% --------------------------------------------------------------------- %
% let CLOSE_UP = GEN_ALL o DISCH_ALL;;					%
% let save_thm (name, th) =  save_open_thm (name, CLOSE_UP th);; 	%
% --------------------------------------------------------------------- %

% --------------------------------------------------------------------- %
% EQ_REFL: |- !x. x=x 							%
% --------------------------------------------------------------------- %

let EQ_REFL = GEN "x:*" (REFL "x:*");;

% --------------------------------------------------------------------- %
% REFL_CLAUSE |- !x. (x=x) = T 						%
% --------------------------------------------------------------------- %

let REFL_CLAUSE = GEN "x:*" (EQT_INTRO(SPEC "x:*" EQ_REFL));;

% --------------------------------------------------------------------- %
% EQ_SYM : |- !x y. x=y  ==>  y=x  					%
% --------------------------------------------------------------------- %

let EQ_SYM = 
    GEN "x:*" (GEN "y:*" (DISCH "x:* = y:*" (SYM(ASSUME "x:* = y:*"))));;

% --------------------------------------------------------------------- %
% EQ_SYM_EQ: |- !x y. (x = y) = (y = x) 				%
% --------------------------------------------------------------------- %

let EQ_SYM_EQ =
 GEN
  "x:*"
  (GEN
   "y:*"
   (IMP_ANTISYM_RULE
    (SPEC "y:*" (SPEC "x:*" EQ_SYM))
    (SPEC "x:*" (SPEC "y:*" EQ_SYM))));;


% --------------------------------------------------------------------- %
% |- !f g. (!x. f x = g x)  ==>  f=g 					%
% --------------------------------------------------------------------- %

let EQ_EXT =
 let f = "f: * -> **"
 and g = "g: * -> **"
 and t = "!x:*. (f:*->**) (x:*) = (g:*->**) (x:*)"
 in
 GEN f (GEN g (DISCH t (EXT(ASSUME t))));;

% --------------------------------------------------------------------- %
% EQ_TRANS |- !x y z. x=y  /\  y=z  ==>  x=z 				%
% --------------------------------------------------------------------- %

let EQ_TRANS =
 let x,y,z = "x:*","y:*","z:*"
 and xyyz  = "(x:*=y:*) /\ (y:*=z:*)"
 in
 GEN x
  (GEN y
   (GEN z
    (DISCH xyyz
     (CONJUNCT1(ASSUME xyyz) TRANS (CONJUNCT2(ASSUME xyyz)))))) ;;

% --------------------------------------------------------------------- %
% BOOL_EQ_DISTINCT |- ~(T=F) /\ ~(F=T) 					%
% --------------------------------------------------------------------- %

let BOOL_EQ_DISTINCT =
 CONJ
  (NOT_INTRO(DISCH "T=F" (EQ_MP (ASSUME "T=F") TRUTH)))
  (NOT_INTRO(DISCH "F=T" (EQ_MP (SYM(ASSUME "F=T")) TRUTH)));;


% --------------------------------------------------------------------- %
% EQ_CLAUSES: proof rewritten to make clauses 1-4 local 		%
%									%
% |- !t.  (T = t)  =  t  /\						%
%         (t = T)  =  t  /\						%
%         (F = t)  =  ~t /\						%
%         (t = F)  =  ~t		                   TFM 90.04.20 %
% --------------------------------------------------------------------- %

let EQ_CLAUSES =
 let t = "t:bool" in
 let cl1 = 						  % (T = t) = t %
     let th1 = DISCH "T = ^t" (EQ_MP (ASSUME "T = ^t") TRUTH)
     and th2 = DISCH t (SYM(EQT_INTRO(ASSUME t))) in
     (IMP_ANTISYM_RULE th1 th2)
 and cl2 = 				 	          % (t = T) = t %
    let th1 = DISCH "^t = T" (EQ_MP (SYM (ASSUME "^t = T")) TRUTH)
    and th2 = DISCH t (EQT_INTRO(ASSUME t)) in
    (IMP_ANTISYM_RULE th1 th2)
 and cl3 = 					         % (F = t) = ~t %
     let th1 = DISCH
                "F = ^t"
                (MP
                 (SPEC t IMP_F)
                 (DISCH t (EQ_MP(SYM(ASSUME "F = ^t"))(ASSUME t))))
     and th2 = IMP_TRANS
                (SPEC t NOT_F)
                (DISCH "^t = F" (SYM(ASSUME "^t = F"))) in
     (IMP_ANTISYM_RULE th1 th2)
 and cl4 =  						 % (t = F) = ~t %
     let th1 = DISCH
                "^t = F"
                (MP
                 (SPEC t IMP_F)
                 (DISCH t (EQ_MP(ASSUME "^t = F")(ASSUME t))))
     and th2 = SPEC t NOT_F in
     (IMP_ANTISYM_RULE th1 th2) in
 GEN t (end_itlist CONJ [cl1;cl2;cl3;cl4]);;



% --------------------------------------------------------------------- %
% MK_COMB:                                                   		%
%									%
%     A1 |- f = g  ,  A2 |- x = y					%
%     ---------------------------					%
%       A1 u A2 |- f x = g y						%
%									%
%<
let MK_COMB (funth,argth) = 
   (let f = lhs (concl funth)
    and x = lhs (concl argth)
    in
    SUBS_OCCS [([2], funth); ([2], argth)] (REFL (mk_comb(f,x))))
   ? failwith `MK_COMB`;;
>%
% --------------------------------------------------------------------- %

let MK_COMB (funth,argth) =
 (let f,g = dest_eq (concl funth)
  and x,y = dest_eq (concl argth)
  in
  (RecordStep(MkCombStep(funth,argth));
   mk_thm(union (hyp funth) (hyp argth), mk_eq(mk_comb(f,x),mk_comb(g,y))))
 ) ? failwith `MK_COMB`;;

%
       A |- !x. (t1 = t2)
     ----------------------
     A |- (\x.t1) = (\x.t2)

let MK_ABS qth =
   (let x,body = dest_forall (concl qth) 
    in
    let ufun = mk_abs(x, lhs body)
    and vfun = mk_abs(x, rhs body)
    in
    let gv = genvar (type_of x) 
    in
    EXT (GEN gv
	 ((BETA_CONV (mk_comb(ufun,gv)))  TRANS  
	  (SPEC gv qth)  TRANS  
	   (SYM (BETA_CONV (mk_comb(vfun,gv)))))))
   ? failwith `MK_ABS`;;
%

let MK_ABS th =
 (let x,(t1,t2) = ((I # dest_eq) o dest_forall o concl) th
  in
  (RecordStep(MkAbsStep th);
   mk_thm(hyp th, mk_eq(mk_abs(x,t1),mk_abs(x,t2))))
 ) ? failwith `MK_ABS`;;


%
     A |- !x. t1 x = t2
     ------------------
      A |-  t1 = \x.t2
%

let HALF_MK_ABS qth =
   (let x,body = dest_forall (concl qth) 
    in
    let t = rhs body
    and gv = genvar (type_of x) 
    in
    let tfun = mk_abs(x,t)
    in
    EXT (GEN gv 		% |- !gv. u gv =< (\x.t) gv  %
	 ((SPEC gv qth)  TRANS  
	  (SYM (BETA_CONV (mk_comb(tfun,gv)))))))
   ? failwith `HALF_MK_ABS`;;

% --------------------------------------------------------------------- %
% ALPHA_CONV: Rename the bound variable of a lambda-abstraction		%
%									%
% ALPHA_CONV "x" "(\y.t)" ---> |- "\y.t = \x. t[x/y]"  			%
%									%
% OLD VERSION: 								%
% 									%
%    let ALPHA_CONV x t =						%
%        (let x' = variant (frees t) x  in				%
%         HALF_MK_ABS (GEN x'(BETA_CONV(mk_comb(t,x')))))		%
%        ? failwith `ALPHA_CONV`;;					%
%									%
% replaced in version 1.12 by an optimized proof.        [TFM 90.06.12] %
% --------------------------------------------------------------------- %

let ALPHA_CONV x t =
   (let x' = variant (frees t) x  in
    let cmb = mk_comb(t,x') in
    let th1 = SYM(ETA_CONV(mk_abs(x',cmb))) and
        th2 = ABS x' (BETA_CONV cmb) in
	TRANS th1 th2) ? 
   failwith `ALPHA_CONV`;;

% Equivalence of alpha-convertable terms 

     t1, t2 alpha-convertable
     -------------------------
            |- t1 = t2

letrec ALPHA t1 t2 =
 (if t1=t2
   then REFL t1
  if is_comb t1 & is_comb t2
   then
   (let t11,t12 = dest_comb t1
    and t21,t22 = dest_comb t2
    in
    let th1 = ALPHA t11 t21
    and th2 = ALPHA t12 t22
    in (AP_THM th1 t12) TRANS (AP_TERM t21 th2))
  if is_abs t1 & is_abs t2
   then
   (let x1,()  = dest_abs t1
    and x2,t2' = dest_abs t2
    in
    let th1 = ALPHA_CONV x2 t1
    in
    let (),t1' = dest_abs(rhs(concl th1))
    in
    let th2 = ALPHA t1' t2'
    in 
    th1 TRANS (ABS x2 th2))
   else fail
   ) ? failwith `ALPHA`;;
%

let ALPHA t1 t2 =
    if aconv t1 t2 
    then
    (RecordStep(AlphaStep(t1,t2));
     mk_thm([],mk_eq(t1,t2)))
    else failwith `ALPHA`;;

% --------------------------------------------------------------------- %
% GEN_ALPHA_CONV: rename bound variables				%
%									%
%       "x"   "(\y.t)"   --->   |- "\y.t = \x. t[x/y]"  		%
%       "x"   "(!y.t)"   --->   |- "!y.t = !x. t[x/y]"  		%
%       "x"   "(?y.t)"   --->   |- "?y.t = ?x. t[x/y]"  		%
%       "x"   "(@y.t)"   --->   |- "@y.t = @x. t[x/y]"  		%
%       "x"   "(?!y.t)"   --->  |- "?!y.t = ?!x. t[x/y]"  		%
%									%
% REVISED: to also deal with ?! quantifier.              [TFM 91.02.24] %
%									%
% Revised to work with any term of the form "B \x.M", where B is a 	%
% binder constant (according to is_binder).              [TFM 92.03.09] %
% --------------------------------------------------------------------- %

let GEN_ALPHA_CONV =
    let check = assert (is_binder o fst o dest_const) in
    \x t. if (is_abs t) then ALPHA_CONV x t else
          (let (c,body) = (check # I) (dest_comb t) in
              AP_TERM c (ALPHA_CONV x body)) ? failwith `GEN_ALPHA_CONV`;;


% --------------------------------------------------------------------- %
% COND_CLAUSES: proof rewritten to make clauses 1 and 2 local 		%
%									%
% |- !t1:*.!t2:*. ((T => t1 | t2) = t1) /\ ((F => t1 | t2) = t2) 	%
%									%
%					                   TFM 90.04.20 %
% --------------------------------------------------------------------- %

let COND_CLAUSES =
    let x,t1,t2,v = "x:*","t1:*","t2:*",genvar":bool" in
    let cl1 =
        let th0 = RIGHT_BETA(AP_THM COND_DEF "T") in
	let th1 = RIGHT_BETA(AP_THM th0 t1) in
        let th2 = RIGHT_BETA(AP_THM th1 t2) in
        let TT = EQT_INTRO(REFL "T") in
        let th3= 
            SUBST[SYM TT,v] "(^v ==> (^x=^t1))=(^x=^t1)" 
                            (CONJUNCT1 (SPEC "^x=^t1" IMP_CLAUSES)) and
            th4 =
            DISCH
              "T=F"
               (MP
                 (SPEC "^x=^t2" FALSITY)
                 (UNDISCH (MP (SPEC "T=F" F_IMP) 
		 	      (CONJUNCT1 BOOL_EQ_DISTINCT)))) in
        let th5 = DISCH "^x=^t1" 
		    (CONJ(EQ_MP(SYM th3)(ASSUME "^x=^t1"))th4) and
            th6	= DISCH "((T=T) ==> (^x=^t1))/\((T=F) ==> (^x=^t2))"
                  (MP
                  (CONJUNCT1
  		    (ASSUME "((T=T) ==> (^x=^t1))/\((T=F) ==> (^x=^t2))"))
                    (REFL "T")) in
        let th7 = 
              MP
               (MP (SPEC "((T=T) ==> (^x=^t1))/\((T=F) ==> (^x=^t2))" 
                   (SPEC "^x=^t1" IMP_ANTISYM_AX))
               th5)
               th6 in
        let th8 = TRANS th2 (SYM(SELECT_EQ x th7)) in
        let th9 = EQ_MP (SYM(BETA_CONV "(\^x.^x = ^t1) ^t1")) (REFL t1) in
        let th10 = MP (SPEC t1 (SPEC "\^x.^x = ^t1" SELECT_AX)) th9 in
            (TRANS th8 (EQ_MP (BETA_CONV(concl th10)) th10))
    and cl2 =
        let th0 = RIGHT_BETA(AP_THM COND_DEF "F") in
	let th1 = RIGHT_BETA(AP_THM th0 t1) in
        let th2 = RIGHT_BETA(AP_THM th1 t2) in
        let FF = EQT_INTRO(REFL "F") in
        let th3 = 
            SUBST[SYM FF,v] "(^v ==> (^x=^t2))=(^x=^t2)" 
                 (CONJUNCT1 (SPEC "^x=^t2" IMP_CLAUSES))
        and th4 =
               DISCH
                  "F=T"
                   (MP
                   (SPEC "^x=^t1" FALSITY)
                    (UNDISCH(MP (SPEC "F=T" F_IMP) 
		             (CONJUNCT2 BOOL_EQ_DISTINCT)))) in
        let th5 =
            DISCH "^x=^t2" (CONJ th4 (EQ_MP(SYM th3)(ASSUME "^x=^t2")))
        and th6 =
            DISCH "((F=T) ==> (^x=^t1)) /\ ((F=F) ==> (^x=^t2))"
             (MP
            (CONJUNCT2(ASSUME "((F=T) ==> (^x=^t1)) /\ ((F=F) ==> (^x=^t2))"))
           (REFL "F")) in
        let th7 = 
             MP
             (MP (SPEC "((F=T) ==> (^x=^t1)) /\ ((F=F) ==> (^x=^t2))" 
                  (SPEC "^x=^t2" IMP_ANTISYM_AX))
               th5)
               th6 in
        let th8 = TRANS th2 (SYM(SELECT_EQ x th7)) in
        let th9 = EQ_MP (SYM(BETA_CONV "(\^x.^x = ^t2) ^t2")) (REFL t2) in
        let th10 = MP (SPEC t2 (SPEC "\^x.^x = ^t2" SELECT_AX)) th9 in
             (TRANS th8 (EQ_MP (BETA_CONV(concl th10)) th10)) in
     GEN t1 (GEN t2 (CONJ cl1 cl2));;

% --------------------------------------------------------------------- %
% COND_ID: 								%
%									%
% |- b. !t:*. (b => t | t) = t						%
%									%
%					                   TFM 90.07.23 %
% --------------------------------------------------------------------- %

let COND_ID =
    let b = "b:bool" and t = "t:*" in
    let def = INST_TYPE [":*",":**"] COND_DEF in
    let th1 = itlist (\x.RIGHT_BETA o (C AP_THM x)) [t;t;b] def in
    let p = genvar ":bool" in
    let asm1 = ASSUME ("((^b=T)==>^p) /\ ((^b=F)==>^p)") in
    let th2 = DISJ_CASES (SPEC b BOOL_CASES_AX)
    	                  (UNDISCH (CONJUNCT1 asm1))
   		          (UNDISCH (CONJUNCT2 asm1)) in
    let imp1 = DISCH (concl asm1) th2 in
    let asm2 = ASSUME p in
    let imp2 = DISCH p (CONJ (DISCH "^b=T" (ADD_ASSUM "^b=T" asm2))
	                     (DISCH "^b=F" (ADD_ASSUM "^b=F" asm2))) in
    let lemma = SPEC "x:* = ^t" (GEN p (IMP_ANTISYM_RULE imp1 imp2)) in
    let th3 = TRANS th1 (SELECT_EQ "x:*" lemma) in
    let th4 = EQ_MP (SYM(BETA_CONV "(\x.x = ^t) ^t")) (REFL t) in
    let th5 = MP (SPEC t (SPEC "\x.x = ^t" SELECT_AX)) th4 in
    let lemma2 = EQ_MP (BETA_CONV(concl th5)) th5 in
         GEN b (GEN t (TRANS th3 lemma2));;

% --------------------------------------------------------------------- %
% IMP_CONJ implements the following derived inference rule:		%
%									%
%  A1 |- P ==> Q    A2 |- R ==> S					%
% --------------------------------- IMP_CONJ				%
%   A1 u A2 |- P /\ R ==> Q /\ S					%
% --------------------------------------------------------------------- %

let IMP_CONJ th1 th2 = 
    let A1,C1 = dest_imp (concl th1) and A2,C2 = dest_imp (concl th2) in
    let a1,a2 = CONJ_PAIR (ASSUME (mk_conj(A1,A2))) in
        DISCH (mk_conj(A1,A2)) (CONJ (MP th1 a1) (MP th2 a2));;

% --------------------------------------------------------------------- %
% EXISTS_IMP : existentially quantify the antecedent and conclusion 	%
% of an implication.							%
%									%
%        A |- P ==> Q							%
% -------------------------- EXISTS_IMP "x"				%
%   A |- (?x.P) ==> (?x.Q)						%
%									%
% --------------------------------------------------------------------- %

let EXISTS_IMP x =
    if (not (is_var x))
       then failwith `EXISTS_IMP: first argument not a variable`
       else \th. let ante,cncl = dest_imp(concl th) in
                 let th1 = EXISTS (mk_exists(x,cncl),x) (UNDISCH th) in
                 let asm = mk_exists(x,ante) in
                      DISCH asm (CHOOSE (x,ASSUME asm) th1) ?
                      failwith `EXISTS_IMP: variable free in assumptions`;;



% ------------------------------------------------------------------------- %
% Distributive laws:							    %
%									    %
% LEFT_AND_OVER_OR |- !t1 t2 t3. t1 /\ (t2 \/ t3) = t1 /\ t2 \/ t1 /\ t3    %
%									    %
% RIGHT_AND_OVER_OR |- !t1 t2 t3. (t2 \/ t3) /\ t1 = t2 /\ t1 \/ t3 /\ t1   %
%									    %
% LEFT_OR_OVER_AND |- !t1 t2 t3. t1 \/ t2 /\ t3 = (t1 \/ t2) /\ (t1 \/ t3)  %
%									    %
% RIGHT_OR_OVER_AND |- !t1 t2 t3. t2 /\ t3 \/ t1 = (t2 \/ t1) /\ (t3 \/ t1) %
% ------------------------------------------------------------------------- %

let LEFT_AND_OVER_OR = 
    let t1 = "t1:bool" and t2 = "t2:bool" and t3 = "t3:bool" in
    let th1,th2 = CONJ_PAIR(ASSUME (mk_conj(t1,mk_disj(t2,t3)))) in
    let th3 = CONJ th1 (ASSUME t2) and th4 = CONJ th1 (ASSUME t3) in
    let th5 = DISJ_CASES_UNION th2 th3 th4 in
    let imp1 = DISCH (mk_conj(t1,mk_disj(t2,t3))) th5 in
    let th1,th2 = (I # C DISJ1 t3) (CONJ_PAIR (ASSUME (mk_conj(t1,t2)))) in
    let th3,th4 = (I # DISJ2 t2) (CONJ_PAIR (ASSUME (mk_conj(t1,t3)))) in
    let th5 = CONJ th1 th2 and th6 = CONJ th3 th4 in
    let th6 = DISJ_CASES (ASSUME (rand(concl imp1))) th5 th6 in
    let imp2 = DISCH (rand(concl imp1)) th6 in
        GEN t1 (GEN t2 (GEN t3 (IMP_ANTISYM_RULE imp1 imp2)));;
    
let RIGHT_AND_OVER_OR = 
    let t1 = "t1:bool" and t2 = "t2:bool" and t3 = "t3:bool" in
    let th1,th2 = CONJ_PAIR(ASSUME (mk_conj(mk_disj(t2,t3),t1))) in
    let th3 = CONJ (ASSUME t2) th2 and th4 = CONJ (ASSUME t3) th2 in
    let th5 = DISJ_CASES_UNION th1 th3 th4 in
    let imp1 = DISCH (mk_conj(mk_disj(t2,t3),t1)) th5 in
    let th1,th2 = (C DISJ1 t3 # I) (CONJ_PAIR (ASSUME (mk_conj(t2,t1)))) in
    let th3,th4 = (DISJ2 t2 # I) (CONJ_PAIR (ASSUME (mk_conj(t3,t1)))) in
    let th5 = CONJ th1 th2 and th6 = CONJ th3 th4 in
    let th6 = DISJ_CASES (ASSUME (rand(concl imp1))) th5 th6 in
    let imp2 = DISCH (rand(concl imp1)) th6 in
        GEN t1 (GEN t2 (GEN t3 (IMP_ANTISYM_RULE imp1 imp2)));;
    
let LEFT_OR_OVER_AND = 
    let t1 = "t1:bool" and t2 = "t2:bool" and t3 = "t3:bool" in
    let th1 = ASSUME (mk_disj(t1,mk_conj(t2,t3))) in
    let th2 = CONJ (DISJ1 (ASSUME t1) t2) (DISJ1 (ASSUME t1) t3) in
    let th3,th4 = CONJ_PAIR (ASSUME(mk_conj(t2,t3))) in
    let th5 = CONJ (DISJ2 t1 th3) (DISJ2 t1 th4) in
    let imp1 = DISCH (concl th1) (DISJ_CASES th1 th2 th5) in
    let th1,th2 = CONJ_PAIR (ASSUME (rand(concl imp1))) in
    let th3 = DISJ1 (ASSUME t1) (mk_conj(t2,t3)) in
    let th4,th5 = CONJ_PAIR (ASSUME (mk_conj(t2,t3))) in
    let th4 = DISJ2 t1 (CONJ (ASSUME t2) (ASSUME t3)) in
    let th5 = DISJ_CASES th2 th3 (DISJ_CASES th1 th3 th4) in
    let imp2 = DISCH (rand(concl imp1)) th5 in
        GEN t1 (GEN t2 (GEN t3 (IMP_ANTISYM_RULE imp1 imp2)));;

let RIGHT_OR_OVER_AND = 
    let t1 = "t1:bool" and t2 = "t2:bool" and t3 = "t3:bool" in
    let th1 = ASSUME (mk_disj(mk_conj(t2,t3),t1)) in
    let th2 = CONJ (DISJ2 t2 (ASSUME t1)) (DISJ2 t3 (ASSUME t1)) in
    let th3,th4 = CONJ_PAIR (ASSUME(mk_conj(t2,t3))) in
    let th5 = CONJ (DISJ1 th3 t1) (DISJ1 th4 t1) in
    let imp1 = DISCH (concl th1) (DISJ_CASES th1 th5 th2) in
    let th1,th2 = CONJ_PAIR (ASSUME (rand(concl imp1))) in
    let th3 = DISJ2 (mk_conj(t2,t3)) (ASSUME t1)  in
    let th4,th5 = CONJ_PAIR (ASSUME (mk_conj(t2,t3))) in
    let th4 = DISJ1 (CONJ (ASSUME t2) (ASSUME t3)) t1 in
    let th5 = DISJ_CASES th2 (DISJ_CASES th1 th4 th3) th3 in
    let imp2 = DISCH (rand(concl imp1)) th5 in
        GEN t1 (GEN t2 (GEN t3 (IMP_ANTISYM_RULE imp1 imp2)));;

% --------------------------------------------------------------------- %
% IMP_DISJ_THM								%
%									%
% |- !t1 t2. t1 ==> t2 = ~t1 \/ t2					%
%									%
% Moved from arithmetic theory	       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let IMP_DISJ_THM =
   let [_;IMP2;_;_;IMP4] = map GEN_ALL (CONJUNCTS (SPEC_ALL IMP_CLAUSES))
   and [_;OR2;_;OR4;_] = map GEN_ALL (CONJUNCTS (SPEC_ALL OR_CLAUSES))
   in  let thT1 = (SPEC "t1:bool" IMP2) TRANS (SYM (SPEC "~t1" OR2))
       and thF1 = (SPEC "t1:bool" IMP4) TRANS (SYM (SPEC "~t1" OR4))
   in  let tm = "t1 ==> t2 = ~t1 \/ t2"
   in  let thT2 = SUBST_CONV [(ASSUME "t2 = T","t2:bool")] tm tm
       and thF2 = SUBST_CONV [(ASSUME "t2 = F","t2:bool")] tm tm
   in  let thT3 = EQ_MP (SYM thT2) thT1
       and thF3 = EQ_MP (SYM thF2) thF1
   in  GEN_ALL (DISJ_CASES (SPEC "t2:bool" BOOL_CASES_AX) thT3 thF3);;

% --------------------------------------------------------------------- %
% IMP_F_EQ_F								%
%									%
% |- !t. t ==> F = (t = F)						%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let IMP_F_EQ_F =
   GEN_ALL (TRANS (el 5 (CONJUNCTS (SPEC_ALL IMP_CLAUSES)))
                     (SYM (el 4 (CONJUNCTS (SPEC_ALL EQ_CLAUSES)))));;

% --------------------------------------------------------------------- %
% AND_IMP_INTRO								%
%									%
% |- !t1 t2 t3. t1 ==> t2 ==> t3 = t1 /\ t2 ==> t3			%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let AND_IMP_INTRO =
   let [IMP1;IMP2;IMP3;_;IMP4] = map GEN_ALL (CONJUNCTS (SPEC_ALL IMP_CLAUSES))
   and [AND1;AND2;AND3;AND4;_] = map GEN_ALL (CONJUNCTS (SPEC_ALL AND_CLAUSES))
   in  let thTl = SPEC "t2 ==> t3" IMP1
       and thFl = SPEC "t2 ==> t3" IMP3
   in  let thTr = AP_THM (AP_TERM "$==>" (SPEC "t2:bool" AND1)) "t3:bool"
       and thFr =
          TRANS (AP_THM (AP_TERM "$==>" (SPEC "t2:bool" AND3)) "t3:bool")
                   (SPEC "t3:bool" IMP3)
   in  let thT1 = thTl TRANS (SYM thTr)
       and thF1 = thFl TRANS (SYM thFr)
   in  let tm = "t1 ==> t2 ==> t3 = t1 /\ t2 ==> t3"
   in  let thT2 = SUBST_CONV [(ASSUME "t1 = T","t1:bool")] tm tm
       and thF2 = SUBST_CONV [(ASSUME "t1 = F","t1:bool")] tm tm
   in  let thT3 = EQ_MP (SYM thT2) thT1
       and thF3 = EQ_MP (SYM thF2) thF1
   in  GEN_ALL (DISJ_CASES (SPEC "t1:bool" BOOL_CASES_AX) thT3 thF3);;

% --------------------------------------------------------------------- %
% EQ_IMP_THM								%
%									%
% |- !t1 t2. (t1 = t2) = (t1 ==> t2) /\ (t2 ==> t1)			%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let EQ_IMP_THM =
   let [IMP1;IMP2;IMP3;_;IMP4] = map GEN_ALL (CONJUNCTS (SPEC_ALL IMP_CLAUSES))
   and [EQ1;EQ2;EQ3;EQ4] = map GEN_ALL (CONJUNCTS (SPEC_ALL EQ_CLAUSES))
   and [AND1;AND2;AND3;AND4;_] = map GEN_ALL (CONJUNCTS (SPEC_ALL AND_CLAUSES))
   in  let thTl = SPEC "t2:bool" EQ1
       and thFl = SPEC "t2:bool" EQ3
   in  let thTr =
          TRANS
          (MK_COMB (AP_TERM "$/\" (SPEC "t2:bool" IMP1),SPEC "t2:bool" IMP2))
          (SPEC "t2:bool" AND2)
       and thFr =
          TRANS
          (MK_COMB (AP_TERM "$/\" (SPEC "t2:bool" IMP3),SPEC "t2:bool" IMP4))
          (SPEC "~t2" AND1)
   in  let thT1 = thTl TRANS (SYM thTr)
       and thF1 = thFl TRANS (SYM thFr)
   in  let tm = "(t1 = t2) = (t1 ==> t2) /\ (t2 ==> t1)"
   in  let thT2 = SUBST_CONV [(ASSUME "t1 = T","t1:bool")] tm tm
       and thF2 = SUBST_CONV [(ASSUME "t1 = F","t1:bool")] tm tm
   in  let thT3 = EQ_MP (SYM thT2) thT1
       and thF3 = EQ_MP (SYM thF2) thF1
   in  GEN_ALL (DISJ_CASES (SPEC "t1:bool" BOOL_CASES_AX) thT3 thF3);;

% --------------------------------------------------------------------- %
% EQ_EXPAND								%
%									%
% |- !t1 t2. (t1 = t2) = ((t1 /\ t2) \/ (~t1 /\ ~t2))			%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let EQ_EXPAND =
   let [NOT1;NOT2] = tl (CONJUNCTS NOT_CLAUSES)
   and [EQ1;EQ2;EQ3;EQ4] = map GEN_ALL (CONJUNCTS (SPEC_ALL EQ_CLAUSES))
   and [AND1;AND2;AND3;AND4;_] = map GEN_ALL (CONJUNCTS (SPEC_ALL AND_CLAUSES))
   and [OR1;OR2;OR3;OR4;_] = map GEN_ALL (CONJUNCTS (SPEC_ALL OR_CLAUSES))
   in  let thTl = SPEC "t2:bool" EQ1
       and thFl = SPEC "t2:bool" EQ3
   in  let thTr =
          TRANS
          (MK_COMB
              (AP_TERM "$\/" (SPEC "t2:bool" AND1),
               TRANS (AP_THM (AP_TERM "$/\" NOT1) "~t2") (SPEC "~t2" AND3)))
          (SPEC "t2:bool" OR4)
       and thFr =
          TRANS
          (MK_COMB
              (AP_TERM "$\/" (SPEC "t2:bool" AND3),
               TRANS (AP_THM (AP_TERM "$/\" NOT2) "~t2") (SPEC "~t2" AND1)))
          (SPEC "~t2" OR3)
   in  let thT1 = thTl TRANS (SYM thTr)
       and thF1 = thFl TRANS (SYM thFr)
   in  let tm = "(t1 = t2) = ((t1 /\ t2) \/ (~t1 /\ ~t2))"
   in  let thT2 = SUBST_CONV [(ASSUME "t1 = T","t1:bool")] tm tm
       and thF2 = SUBST_CONV [(ASSUME "t1 = F","t1:bool")] tm tm
   in  let thT3 = EQ_MP (SYM thT2) thT1
       and thF3 = EQ_MP (SYM thF2) thF1
   in  GEN_ALL (DISJ_CASES (SPEC "t1:bool" BOOL_CASES_AX) thT3 thF3);;

% --------------------------------------------------------------------- %
% COND_RATOR								%
%									%
% |- !b (f:*->**) g x. (b => f | g) x = (b => f x | g x)		%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let COND_RATOR =
   let (COND_T,COND_F) =
      (GEN_ALL # GEN_ALL) (CONJ_PAIR (SPEC_ALL COND_CLAUSES))
   in  let thTl = AP_THM (ISPECL ["f:*->**";"g:*->**"] COND_T) "x:*"
       and thFl = AP_THM (ISPECL ["f:*->**";"g:*->**"] COND_F) "x:*"
   in  let thTr = ISPECL ["(f:*->**) x";"(g:*->**) x"] COND_T
       and thFr = ISPECL ["(f:*->**) x";"(g:*->**) x"] COND_F
   in  let thT1 = thTl TRANS (SYM thTr)
       and thF1 = thFl TRANS (SYM thFr)
   in  let tm = "(b => (f:*->**) | g) x = (b => f x | g x)"
   in  let thT2 = SUBST_CONV [(ASSUME "b = T","b:bool")] tm tm
       and thF2 = SUBST_CONV [(ASSUME "b = F","b:bool")] tm tm
   in  let thT3 = EQ_MP (SYM thT2) thT1
       and thF3 = EQ_MP (SYM thF2) thF1
   in  GEN_ALL (DISJ_CASES (SPEC "b:bool" BOOL_CASES_AX) thT3 thF3);;

% --------------------------------------------------------------------- %
% COND_RAND								%
%									%
% |- !(f:*->**) b x y. f (b => x | y) = (b => f x | f y)		%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let COND_RAND =
   let (COND_T,COND_F) =
      (GEN_ALL # GEN_ALL) (CONJ_PAIR (SPEC_ALL COND_CLAUSES))
   in  let thTl = AP_TERM "f:*->**" (ISPECL ["x:*";"y:*"] COND_T)
       and thFl = AP_TERM "f:*->**" (ISPECL ["x:*";"y:*"] COND_F)
   in  let thTr = ISPECL ["(f:*->**) x";"(f:*->**) y"] COND_T
       and thFr = ISPECL ["(f:*->**) x";"(f:*->**) y"] COND_F
   in  let thT1 = thTl TRANS (SYM thTr)
       and thF1 = thFl TRANS (SYM thFr)
   in  let tm = "(f:*->**) (b => x | y) = (b => f x | f y)"
   in  let thT2 = SUBST_CONV [(ASSUME "b = T","b:bool")] tm tm
       and thF2 = SUBST_CONV [(ASSUME "b = F","b:bool")] tm tm
   in  let thT3 = EQ_MP (SYM thT2) thT1
       and thF3 = EQ_MP (SYM thF2) thF1
   in  GEN_ALL (DISJ_CASES (SPEC "b:bool" BOOL_CASES_AX) thT3 thF3);;

% --------------------------------------------------------------------- %
% COND_ABS								%
%									%
% |- !b (f:*->**) g. (\x. (b => f(x) | g(x))) = (b => f | g)		%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let COND_ABS =
   let th = SYM (SPECL ["b:bool";"f:*->**";"g:*->**";"x:*"] COND_RATOR)
   in  GEN_ALL ((ABS "x:*" th) TRANS (ETA_CONV "\x. (b => (f:*->**) | g) x"));;

% --------------------------------------------------------------------- %
% COND_EXPAND								%
%									%
% |- !b t1 t2. (b => t1 | t2) = ((~b \/ t1) /\ (b \/ t2))		%
%									%
%				       	                   RJB 92.09.26 %
% --------------------------------------------------------------------- %

let COND_EXPAND =
   let (COND_T,COND_F) =
      (GEN_ALL # GEN_ALL) (CONJ_PAIR (SPEC_ALL COND_CLAUSES))
   and [NOT1;NOT2] = tl (CONJUNCTS NOT_CLAUSES)
   and [AND1;AND2;AND3;AND4;_] = map GEN_ALL (CONJUNCTS (SPEC_ALL AND_CLAUSES))
   and [OR1;OR2;OR3;OR4;_] = map GEN_ALL (CONJUNCTS (SPEC_ALL OR_CLAUSES))
   in  let thTl = ISPECL ["t1:bool";"t2:bool"] COND_T
       and thFl = ISPECL ["t1:bool";"t2:bool"] COND_F
   in  let thTr =
          let th1 = TRANS (AP_THM (AP_TERM "$\/" NOT1) "t1:bool")
                             (SPEC "t1:bool" OR3)
          and th2 = SPEC "t2:bool" OR1
          in  TRANS (MK_COMB (AP_TERM "$/\" th1,th2)) (SPEC "t1:bool" AND2)
       and thFr =
          let th1 = TRANS (AP_THM (AP_TERM "$\/" NOT2) "t1:bool")
                             (SPEC "t1:bool" OR1)
          and th2 = SPEC "t2:bool" OR3
          in  TRANS (MK_COMB (AP_TERM "$/\" th1,th2)) (SPEC "t2:bool" AND1)
   in  let thT1 = thTl TRANS (SYM thTr)
       and thF1 = thFl TRANS (SYM thFr)
   in  let tm = "(b => t1 | t2) = ((~b \/ t1) /\ (b \/ t2))"
   in  let thT2 = SUBST_CONV [(ASSUME "b = T","b:bool")] tm tm
       and thF2 = SUBST_CONV [(ASSUME "b = F","b:bool")] tm tm
   in  let thT3 = EQ_MP (SYM thT2) thT1
       and thF3 = EQ_MP (SYM thF2) thF1
   in  GEN_ALL (DISJ_CASES (SPEC "b:bool" BOOL_CASES_AX) thT3 thF3);;