This file is indexed.

/usr/share/gap/lib/ctblfuns.gd is in gap-libs 4r7p5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
#############################################################################
##
#W  ctblfuns.gd                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the definition of categories of class functions,
##  and the corresponding properties, attributes, and operations.
##
##  1. Why Class Functions?
##  2. Basic Operations for Class Functions
##  3. Comparison of Class Functions
##  4. Arithmetic Operations for Class Functions
##  5. Printing Class Functions
##  6. Creating Class Functions from Values Lists
##  7. Creating Class Functions using Groups
##  8. Operations for Class Functions
##  9. Restricted and Induced Class Functions
##  10. Reducing Virtual Characters
##  11. Symmetrizations of Class Functions
##  12. Operations for Brauer Characters
##  13. Domains Generated by Class Functions
##  14. Auxiliary operations
##


#############################################################################
##
#C  IsClassFunction( <obj> )
##
##  <#GAPDoc Label="IsClassFunction">
##  <ManSection>
##  <Filt Name="IsClassFunction" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Index>class function</Index><Index>class function objects</Index>
##  A <E>class function</E> (in characteristic <M>p</M>) of a finite group
##  <M>G</M> is a map from the set of (<M>p</M>-regular) elements in <M>G</M>
##  to the field of cyclotomics
##  that is constant on conjugacy classes of <M>G</M>.
##  <P/>
##  Each class function in &GAP; is represented by an <E>immutable list</E>,
##  where at the <M>i</M>-th position the value on the <M>i</M>-th conjugacy
##  class of the character table of <M>G</M> is stored.
##  The ordering of the conjugacy classes is the one used in the underlying
##  character table.
##  Note that if the character table has access to its underlying group then
##  the ordering of conjugacy classes in the group and in the character table
##  may differ
##  (see <Ref Sect="The Interface between Character Tables and Groups"/>);
##  class functions always refer to the ordering of classes in the character
##  table.
##  <P/>
##  <E>Class function objects</E> in &GAP; are not just plain lists,
##  they store the character table of the group <M>G</M> as value of the
##  attribute <Ref Func="UnderlyingCharacterTable"/>.
##  The group <M>G</M> itself is accessible only via the character table
##  and thus only if the character table stores its group, as value of the
##  attribute <Ref Attr="UnderlyingGroup" Label="for character tables"/>.
##  The reason for this is that many computations with class functions are
##  possible without using their groups,
##  for example class functions of character tables in the &GAP;
##  character table library do in general not have access to their
##  underlying groups.
##  <P/>
##  There are (at least) two reasons why class functions in &GAP; are
##  <E>not</E> implemented as mappings.
##  First, we want to distinguish class functions in different
##  characteristics, for example to be able to define the Frobenius character
##  of a given Brauer character;
##  viewed as mappings, the trivial characters in all characteristics coprime
##  to the order of <M>G</M> are equal.
##  Second, the product of two class functions shall be again a class
##  function, whereas the product of general mappings is defined as
##  composition.
##  <P/>
##  A further argument is that the typical operations for mappings such as
##  <Ref Func="Image" Label="set of images of the source of a general mapping"/>
##  and
##  <Ref Func="PreImage" Label="set of preimages of the range of a general mapping"/>
##  play no important role for class functions.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsClassFunction",
    IsScalar and IsCommutativeElement and IsAssociativeElement
             and IsHomogeneousList and IsScalarCollection and IsFinite
             and IsGeneralizedRowVector );


#############################################################################
##
#F  CharacterString( <char>, <str> )
##
##  <ManSection>
##  <Func Name="CharacterString" Arg='char, str'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CharacterString" );


#############################################################################
##
##  1. Why Class Functions?
##
##  <#GAPDoc Label="[1]{ctblfuns}">
##  In principle it is possible to represent group characters or more general
##  class functions by the plain lists of their values,
##  and in fact many operations for class functions work with plain lists of
##  class function values.
##  But this has two disadvantages.
##  <P/>
##  First, it is then necessary to regard a values list explicitly as a class
##  function of a particular character table, by supplying this character
##  table as an argument.
##  In practice this means that with this setup,
##  the user has the task to put the objects into the right context.
##  For example, forming the scalar product or the tensor product of two
##  class functions or forming an induced class function or a conjugate
##  class function then needs three arguments in this case;
##  this is particularly inconvenient in cases where infix operations cannot
##  be used because of the additional argument, as for tensor products and
##  induced class functions.
##  <P/>
##  Second, when one says that
##  <Q><M>\chi</M> is a character of a group <M>G</M></Q>
##  then this object <M>\chi</M> carries a lot of information.
##  <M>\chi</M> has certain properties such as being irreducible or not.
##  Several subgroups of <M>G</M> are related to <M>\chi</M>,
##  such as the kernel and the centre of <M>\chi</M>.
##  Other attributes of characters are the determinant and the central
##  character.
##  This knowledge cannot be stored in a plain list.
##  <P/>
##  For dealing with a group together with its characters, and maybe also
##  subgroups and their characters, it is desirable that &GAP; keeps track
##  of the interpretation of characters.
##  On the other hand, for using characters without accessing their groups,
##  such as characters of tables from the &GAP; table library,
##  dealing just with values lists is often sufficient.
##  In particular, if one deals with incomplete character tables then it is
##  often necessary to specify the arguments explicitly,
##  for example one has to choose a fusion map or power map from a set of
##  possibilities.
##  <P/>
##  The main idea behind class function objects is that a class function
##  object is equal to its values list in the sense of <Ref Func="\="/>,
##  so class function objects can be used wherever their values lists
##  can be used,
##  but there are operations for class function objects that do not work
##  just with values lists.
##  <!-- Note that a class function object lies in the same family as its list of-->
##  <!-- values.-->
##  <!-- As a consequence, there is no filter <C>IsClassFunctionCollection</C>,-->
##  <!-- so we have no special treatment of spaces and algebras without hacks.-->
##  &GAP; library functions prefer to return class function objects
##  rather than returning just values lists,
##  for example <Ref Attr="Irr" Label="for a group"/> lists
##  consist of class function objects,
##  and <Ref Func="TrivialCharacter" Label="for a group"/>
##  returns a class function object.
##  <P/>
##  Here is an <E>example</E> that shows both approaches.
##  First we define some groups.
##  <P/>
##  <Example><![CDATA[
##  gap> S4:= SymmetricGroup( 4 );;  SetName( S4, "S4" );
##  gap> D8:= SylowSubgroup( S4, 2 );; SetName( D8, "D8" );
##  ]]></Example>
##  <P/>
##  We do some computations using the functions described later in this
##  Chapter, first with class function objects.
##  <P/>
##  <Example><![CDATA[
##  gap> irrS4:= Irr( S4 );;
##  gap> irrD8:= Irr( D8 );;
##  gap> chi:= irrD8[4];
##  Character( CharacterTable( D8 ), [ 1, -1, 1, -1, 1 ] )
##  gap> chi * chi;
##  Character( CharacterTable( D8 ), [ 1, 1, 1, 1, 1 ] )
##  gap> ind:= chi ^ S4;
##  Character( CharacterTable( S4 ), [ 3, -1, -1, 0, 1 ] )
##  gap> List( irrS4, x -> ScalarProduct( x, ind ) );
##  [ 0, 1, 0, 0, 0 ]
##  gap> det:= Determinant( ind );
##  Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] )
##  gap> cent:= CentralCharacter( ind );
##  ClassFunction( CharacterTable( S4 ), [ 1, -2, -1, 0, 2 ] )
##  gap> rest:= Restricted( cent, D8 );
##  ClassFunction( CharacterTable( D8 ), [ 1, -2, -1, -1, 2 ] )
##  ]]></Example>
##  <P/>
##  Now we repeat these calculations with plain lists of character values.
##  Here we need the character tables in some places.
##  <P/>
##  <Example><![CDATA[
##  gap> tS4:= CharacterTable( S4 );;
##  gap> tD8:= CharacterTable( D8 );;
##  gap> chi:= ValuesOfClassFunction( irrD8[4] );
##  [ 1, -1, 1, -1, 1 ]
##  gap> Tensored( [ chi ], [ chi ] )[1];
##  [ 1, 1, 1, 1, 1 ]
##  gap> ind:= InducedClassFunction( tD8, chi, tS4 );
##  ClassFunction( CharacterTable( S4 ), [ 3, -1, -1, 0, 1 ] )
##  gap> List( Irr( tS4 ), x -> ScalarProduct( tS4, x, ind ) );
##  [ 0, 1, 0, 0, 0 ]
##  gap> det:= DeterminantOfCharacter( tS4, ind );
##  ClassFunction( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] )
##  gap> cent:= CentralCharacter( tS4, ind );
##  ClassFunction( CharacterTable( S4 ), [ 1, -2, -1, 0, 2 ] )
##  gap> rest:= Restricted( tS4, cent, tD8 );
##  ClassFunction( CharacterTable( D8 ), [ 1, -2, -1, -1, 2 ] )
##  ]]></Example>
##  <P/>
##  If one deals with character tables from the &GAP; table library then
##  one has no access to their groups,
##  but often the tables provide enough information for computing induced or
##  restricted class functions, symmetrizations etc.,
##  because the relevant class fusions and power maps are often stored on
##  library tables.
##  In these cases it is possible to use the tables instead of the groups
##  as arguments.
##  (If necessary information is not uniquely determined by the tables then
##  an error is signalled.)
##  <P/>
##  <Example><![CDATA[
##  gap> s5 := CharacterTable( "A5.2" );; irrs5 := Irr( s5  );;
##  gap> m11:= CharacterTable( "M11"  );; irrm11:= Irr( m11 );;
##  gap> chi:= TrivialCharacter( s5 );
##  Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, 1, 1, 1 ] )
##  gap> chi ^ m11;
##  Character( CharacterTable( "M11" ), [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 
##   ] )
##  gap> Determinant( irrs5[4] );
##  Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, -1, -1, -1 ] )
##  ]]></Example>
##  <P/>
##  Functions that compute <E>normal</E> subgroups related to characters
##  have counterparts that return the list of class positions corresponding
##  to these groups.
##  <P/>
##  <Example><![CDATA[
##  gap> ClassPositionsOfKernel( irrs5[2] );
##  [ 1, 2, 3, 4 ]
##  gap> ClassPositionsOfCentre( irrs5[2] );
##  [ 1, 2, 3, 4, 5, 6, 7 ]
##  ]]></Example>
##  <P/>
##  Non-normal subgroups cannot be described this way,
##  so for example inertia subgroups (see&nbsp;<Ref Func="InertiaSubgroup"/>)
##  can in general not be computed from character tables without access to
##  their groups.
##  <#/GAPDoc>
##


#############################################################################
##
##  2. Basic Operations for Class Functions
##
##  <#GAPDoc Label="[2]{ctblfuns}">
##  Basic operations for class functions are
##  <Ref Func="UnderlyingCharacterTable"/>,
##  <Ref Func="ValuesOfClassFunction"/>,
##  and the basic operations for lists
##  (see&nbsp;<Ref Sect="Basic Operations for Lists"/>).
##  <#/GAPDoc>
##


#############################################################################
##
#A  UnderlyingCharacterTable( <psi> )
##
##  <#GAPDoc Label="UnderlyingCharacterTable">
##  <ManSection>
##  <Attr Name="UnderlyingCharacterTable" Arg='psi'/>
##
##  <Description>
##  For a class function <A>psi</A> of the group <M>G</M>, say,
##  the character table of <M>G</M> is stored as value of
##  <Ref Attr="UnderlyingCharacterTable"/>.
##  The ordering of entries in the list <A>psi</A>
##  (see&nbsp;<Ref Func="ValuesOfClassFunction"/>)
##  refers to the ordering of conjugacy classes in this character table.
##  <P/>
##  If <A>psi</A> is an ordinary class function then the underlying character
##  table is the ordinary character table of <M>G</M>
##  (see&nbsp;<Ref Func="OrdinaryCharacterTable" Label="for a group"/>),
##  if <A>psi</A> is a class function in characteristic <M>p \neq 0</M> then
##  the underlying character table is the <M>p</M>-modular Brauer table of
##  <M>G</M>
##  (see&nbsp;<Ref Func="BrauerTable"
##  Label="for a group, and a prime integer"/>).
##  So the underlying characteristic of <A>psi</A> can be read off from the
##  underlying character table.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "UnderlyingCharacterTable", IsClassFunction );


#############################################################################
##
#A  ValuesOfClassFunction( <psi> ) . . . . . . . . . . . . . . list of values
##
##  <#GAPDoc Label="ValuesOfClassFunction">
##  <ManSection>
##  <Attr Name="ValuesOfClassFunction" Arg='psi'/>
##
##  <Description>
##  is the list of values of the class function <A>psi</A>,
##  the <M>i</M>-th entry being the value on the <M>i</M>-th conjugacy class
##  of the underlying character table
##  (see&nbsp;<Ref Func="UnderlyingCharacterTable"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> g:= SymmetricGroup( 4 );
##  Sym( [ 1 .. 4 ] )
##  gap> psi:= TrivialCharacter( g );
##  Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1, 1 ] )
##  gap> UnderlyingCharacterTable( psi );
##  CharacterTable( Sym( [ 1 .. 4 ] ) )
##  gap> ValuesOfClassFunction( psi );
##  [ 1, 1, 1, 1, 1 ]
##  gap> IsList( psi );
##  true
##  gap> psi[1];
##  1
##  gap> Length( psi );
##  5
##  gap> IsBound( psi[6] );
##  false
##  gap> Concatenation( psi, [ 2, 3 ] );
##  [ 1, 1, 1, 1, 1, 2, 3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ValuesOfClassFunction", IsClassFunction );


#############################################################################
##
##  3. Comparison of Class Functions
##
##  <#GAPDoc Label="[3]{ctblfuns}">
##  With respect to <Ref Func="\="/> and <Ref Func="\&lt;"/>,
##  class functions behave equally to their lists of values
##  (see&nbsp;<Ref Func="ValuesOfClassFunction"/>).
##  So two class functions are equal if and only if their lists of values are
##  equal, no matter whether they are class functions of the same character
##  table, of the same group but w.r.t.&nbsp;different class ordering,
##  or of different groups.
##  <P/>
##  <Example><![CDATA[
##  gap> grps:= Filtered( AllSmallGroups( 8 ), g -> not IsAbelian( g ) );
##  [ <pc group of size 8 with 3 generators>, 
##    <pc group of size 8 with 3 generators> ]
##  gap> t1:= CharacterTable( grps[1] );  SetName( t1, "t1" );
##  CharacterTable( <pc group of size 8 with 3 generators> )
##  gap> t2:= CharacterTable( grps[2] );  SetName( t2, "t2" );
##  CharacterTable( <pc group of size 8 with 3 generators> )
##  gap> irr1:= Irr( grps[1] );
##  [ Character( t1, [ 1, 1, 1, 1, 1 ] ), 
##    Character( t1, [ 1, -1, -1, 1, 1 ] ), 
##    Character( t1, [ 1, -1, 1, 1, -1 ] ), 
##    Character( t1, [ 1, 1, -1, 1, -1 ] ), 
##    Character( t1, [ 2, 0, 0, -2, 0 ] ) ]
##  gap> irr2:= Irr( grps[2] );
##  [ Character( t2, [ 1, 1, 1, 1, 1 ] ), 
##    Character( t2, [ 1, -1, -1, 1, 1 ] ), 
##    Character( t2, [ 1, -1, 1, 1, -1 ] ), 
##    Character( t2, [ 1, 1, -1, 1, -1 ] ), 
##    Character( t2, [ 2, 0, 0, -2, 0 ] ) ]
##  gap> irr1 = irr2;
##  true
##  gap> IsSSortedList( irr1 );
##  false
##  gap> irr1[1] < irr1[2];
##  false
##  gap> irr1[2] < irr1[3];
##  true
##  ]]></Example>
##  <#/GAPDoc>
##


#############################################################################
##
##  4. Arithmetic Operations for Class Functions
##
##  <#GAPDoc Label="[4]{ctblfuns}">
##  Class functions are <E>row vectors</E> of cyclotomics.
##  The <E>additive</E> behaviour of class functions is defined such that
##  they are equal to the plain lists of class function values except that
##  the results are represented again as class functions whenever this makes
##  sense.
##  The <E>multiplicative</E> behaviour, however, is different.
##  This is motivated by the fact that the tensor product of class functions
##  is a more interesting operation than the vector product of plain lists.
##  (Another candidate for a multiplication of compatible class functions
##  would have been the inner product, which is implemented via the function
##  <Ref Func="ScalarProduct" Label="for characters"/>.
##  In terms of filters, the arithmetic of class functions is based on the
##  decision that they lie in <Ref Func="IsGeneralizedRowVector"/>,
##  with additive nesting depth <M>1</M>, but they do <E>not</E> lie in
##  <Ref Func="IsMultiplicativeGeneralizedRowVector"/>.
##  <P/>
##  More specifically, the scalar multiple of a class function with a
##  cyclotomic is a class function,
##  and the sum and the difference of two class functions
##  of the same underlying character table
##  (see&nbsp;<Ref Func="UnderlyingCharacterTable"/>)
##  are again class functions of this table.
##  The sum and the difference of a class function and a list that is
##  <E>not</E> a class function are plain lists,
##  as well as the sum and the difference of two class functions of different
##  character tables.
##  <P/>
##  <Example><![CDATA[
##  gap> g:= SymmetricGroup( 4 );;  tbl:= CharacterTable( g );;
##  gap> SetName( tbl, "S4" );  irr:= Irr( g );
##  [ Character( S4, [ 1, -1, 1, 1, -1 ] ), 
##    Character( S4, [ 3, -1, -1, 0, 1 ] ), 
##    Character( S4, [ 2, 0, 2, -1, 0 ] ), 
##    Character( S4, [ 3, 1, -1, 0, -1 ] ), 
##    Character( S4, [ 1, 1, 1, 1, 1 ] ) ]
##  gap> 2 * irr[5];
##  Character( S4, [ 2, 2, 2, 2, 2 ] )
##  gap> irr[1] / 7;
##  ClassFunction( S4, [ 1/7, -1/7, 1/7, 1/7, -1/7 ] )
##  gap> lincomb:= irr[3] + irr[1] - irr[5];
##  VirtualCharacter( S4, [ 2, -2, 2, -1, -2 ] )
##  gap> lincomb:= lincomb + 2 * irr[5];
##  VirtualCharacter( S4, [ 4, 0, 4, 1, 0 ] )
##  gap> IsCharacter( lincomb );
##  true
##  gap> lincomb;
##  Character( S4, [ 4, 0, 4, 1, 0 ] )
##  gap> irr[5] + 2;
##  [ 3, 3, 3, 3, 3 ]
##  gap> irr[5] + [ 1, 2, 3, 4, 5 ];
##  [ 2, 3, 4, 5, 6 ]
##  gap> zero:= 0 * irr[1];
##  VirtualCharacter( S4, [ 0, 0, 0, 0, 0 ] )
##  gap> zero + Z(3);
##  [ Z(3), Z(3), Z(3), Z(3), Z(3) ]
##  gap> irr[5] + TrivialCharacter( DihedralGroup( 8 ) );
##  [ 2, 2, 2, 2, 2 ]
##  ]]></Example>
##  <P/>
##  <Index Subkey="as ring elements">class functions</Index>
##  The product of two class functions of the same character table is the
##  tensor product (pointwise product) of these class functions.
##  Thus the set of all class functions of a fixed group forms a ring,
##  and for any field <M>F</M> of cyclotomics, the <M>F</M>-span of a given
##  set of class functions forms an algebra.
##  <P/>
##  The product of two class functions of <E>different</E> tables and the
##  product of a class function and a list that is <E>not</E> a class
##  function are not defined, an error is signalled in these cases.
##  Note that in this respect, class functions behave differently from their
##  values lists, for which the product is defined as the standard scalar
##  product.
##  <P/>
##  <Example><![CDATA[
##  gap> tens:= irr[3] * irr[4];
##  Character( S4, [ 6, 0, -2, 0, 0 ] )
##  gap> ValuesOfClassFunction( irr[3] ) * ValuesOfClassFunction( irr[4] );
##  4
##  ]]></Example>
##  <P/>
##  <Index Subkey="of class function">inverse</Index>
##  Class functions without zero values are invertible,
##  the <E>inverse</E> is defined pointwise.
##  As a consequence, for example groups of linear characters can be formed.
##  <P/>
##  <Example><![CDATA[
##  gap> tens / irr[1];
##  Character( S4, [ 6, 0, -2, 0, 0 ] )
##  ]]></Example>
##  <P/>
##  Other (somewhat strange) implications of the definition of arithmetic
##  operations for class functions, together with the general rules of list
##  arithmetic (see&nbsp;<Ref Sect="Arithmetic for Lists"/>),
##  apply to the case of products involving <E>lists</E> of class functions.
##  No inverse of the list of irreducible characters as a matrix is defined;
##  if one is interested in the inverse matrix then one can compute it from
##  the matrix of class function values.
##  <P/>
##  <Example><![CDATA[
##  gap> Inverse( List( irr, ValuesOfClassFunction ) );
##  [ [ 1/24, 1/8, 1/12, 1/8, 1/24 ], [ -1/4, -1/4, 0, 1/4, 1/4 ], 
##    [ 1/8, -1/8, 1/4, -1/8, 1/8 ], [ 1/3, 0, -1/3, 0, 1/3 ], 
##    [ -1/4, 1/4, 0, -1/4, 1/4 ] ]
##  ]]></Example>
##  <P/>
##  Also the product of a class function with a list of class functions is
##  <E>not</E> a vector-matrix product but the list of pointwise products.
##  <P/>
##  <Example><![CDATA[
##  gap> irr[1] * irr{ [ 1 .. 3 ] };
##  [ Character( S4, [ 1, 1, 1, 1, 1 ] ), 
##    Character( S4, [ 3, 1, -1, 0, -1 ] ), 
##    Character( S4, [ 2, 0, 2, -1, 0 ] ) ]
##  ]]></Example>
##  <P/>
##  And the product of two lists of class functions is <E>not</E> the matrix
##  product but the sum of the pointwise products.
##  <P/>
##  <Example><![CDATA[
##  gap> irr * irr;
##  Character( S4, [ 24, 4, 8, 3, 4 ] )
##  ]]></Example>
##  <P/>
##  <Index Subkey="of group element using powering operator">character value</Index>
##  <Index Subkey="meaning for class functions">power</Index>
##  <Index Subkey="for class functions"><C>^</C></Index>
##  The <E>powering</E> operator <Ref Func="\^"/> has several meanings
##  for class functions.
##  The power of a class function by a nonnegative integer is clearly the
##  tensor power.
##  The power of a class function by an element that normalizes the
##  underlying group or by a Galois automorphism is the conjugate class
##  function.
##  (As a consequence, the application of the permutation induced by such an
##  action cannot be denoted by <Ref Func="\^"/>; instead one can use
##  <Ref Func="Permuted"/>.)
##  The power of a class function by a group or a character table is the
##  induced class function (see&nbsp;<Ref Func="InducedClassFunction"
##  Label="for the character table of a supergroup"/>).
##  The power of a group element by a class function is the class function
##  value at (the conjugacy class containing) this element.
##  <P/>
##  <Example><![CDATA[
##  gap> irr[3] ^ 3;
##  Character( S4, [ 8, 0, 8, -1, 0 ] )
##  gap> lin:= LinearCharacters( DerivedSubgroup( g ) );
##  [ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
##      [ 1, 1, E(3)^2, E(3) ] ), 
##    Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
##      [ 1, 1, E(3), E(3)^2 ] ) ]
##  gap> List( lin, chi -> chi ^ (1,2) );
##  [ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
##      [ 1, 1, E(3), E(3)^2 ] ), 
##    Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
##      [ 1, 1, E(3)^2, E(3) ] ) ]
##  gap> Orbit( GaloisGroup( CF(3) ), lin[2] );
##  [ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
##      [ 1, 1, E(3)^2, E(3) ] ), 
##    Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
##      [ 1, 1, E(3), E(3)^2 ] ) ]
##  gap> lin[1]^g;
##  Character( S4, [ 2, 0, 2, 2, 0 ] )
##  gap> (1,2,3)^lin[2];
##  E(3)^2
##  ]]></Example>
##
##  <ManSection>
##  <Func Name="Characteristic" Arg='chi' Label="for a class function"/>
##
##  <Description>
##  The <E>characteristic</E> of class functions is zero,
##  as for all list of cyclotomics.
##  For class functions of a <M>p</M>-modular character table, such as Brauer
##  characters, the prime <M>p</M> is given by the
##  <Ref Attr="UnderlyingCharacteristic" Label="for a character table"/>
##  value of the character table.
##  <P/>
##  <Example><![CDATA[
##  gap> Characteristic( irr[1] );
##  0
##  gap> irrmod2:= Irr( g, 2 );
##  [ Character( BrauerTable( Sym( [ 1 .. 4 ] ), 2 ), [ 1, 1 ] ), 
##    Character( BrauerTable( Sym( [ 1 .. 4 ] ), 2 ), [ 2, -1 ] ) ]
##  gap> Characteristic( irrmod2[1] );
##  0
##  gap> UnderlyingCharacteristic( UnderlyingCharacterTable( irrmod2[1] ) );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Func Name="ComplexConjugate" Arg='chi' Label="for a class function"/>
##  <Func Name="GaloisCyc" Arg='chi, k' Label="for a class function"/>
##  <Func Name="Permuted" Arg='chi, pi' Label="for a class function"/>
##
##  <Description>
##  The operations
##  <Ref Func="ComplexConjugate" Label="for a class function"/>,
##  <Ref Func="GaloisCyc" Label="for a class function"/>,
##  and <Ref Func="Permuted" Label="for a class function"/> return
##  a class function when they are called with a class function;
##  The complex conjugate of a class function that is known to be a (virtual)
##  character is again known to be a (virtual) character, and applying an
##  arbitrary Galois automorphism to an ordinary (virtual) character yields
##  a (virtual) character.
##  <P/>
##  <Example><![CDATA[
##  gap> ComplexConjugate( lin[2] );
##  Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, E(3), E(3)^2 
##   ] )
##  gap> GaloisCyc( lin[2], 5 );
##  Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, E(3), E(3)^2 
##   ] )
##  gap> Permuted( lin[2], (2,3,4) );
##  ClassFunction( CharacterTable( Alt( [ 1 .. 4 ] ) ), 
##  [ 1, E(3), 1, E(3)^2 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <P/>
##  <ManSection>
##  <Func Name="Order" Arg='chi' Label="for a class function"/>
##
##  <Description>
##  By definition of <Ref Func="Order"/> for arbitrary monoid elements,
##  the return value of <Ref Func="Order"/> for a character must be its
##  multiplicative order.
##  The <E>determinantal order</E>
##  (see&nbsp;<Ref Func="DeterminantOfCharacter"/>) of a character <A>chi</A>
##  can be computed as <C>Order( Determinant( <A>chi</A> ) )</C>.
##  <P/>
##  <Example><![CDATA[
##  gap> det:= Determinant( irr[3] );
##  Character( S4, [ 1, -1, 1, 1, -1 ] )
##  gap> Order( det );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#A  GlobalPartitionOfClasses( <tbl> )
##
##  <ManSection>
##  <Attr Name="GlobalPartitionOfClasses" Arg='tbl'/>
##
##  <Description>
##  Let <M>n</M> be the number of conjugacy classes of the character table
##  <A>tbl</A>.
##  <Ref Func="GlobalPartitionOfClasses"/> returns a list of subsets of the
##  range <M>[ 1 .. n ]</M> that forms a partition of <M>[ 1 .. n ]</M>.
##  This partition is respected by each table automorphism of <A>tbl</A>
##  (see&nbsp;<Ref Func="AutomorphismsOfTable"/>);
##  <E>note</E> that also fixed points occur.
##  <P/>
##  This is useful for the computation of table automorphisms
##  and of conjugate class functions.
##  <P/>
##  Since group automorphisms induce table automorphisms, the partition is
##  also respected by the permutation group that occurs in the computation
##  of inertia groups and conjugate class functions.
##  <P/>
##  If the group of table automorphisms is already known then its orbits
##  form the finest possible global partition.
##  <P/>
##  Otherwise the subsets in the partition are the sets of classes with
##  same centralizer order and same element order, and
##  &ndash;if more about the character table is known&ndash;
##  also with the same number of <M>p</M>-th root classes,
##  for all <M>p</M> for which the power maps are stored.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "GlobalPartitionOfClasses", IsNearlyCharacterTable );


#############################################################################
##
#O  CorrespondingPermutations( <tbl>[, <chi>], <elms> )
##
##  <ManSection>
##  <Oper Name="CorrespondingPermutations" Arg='tbl[, chi], elms'/>
##
##  <Description>
##  Called with two arguments <A>tbl</A> and <A>elms</A>,
##  <Ref Oper="CorrespondingPermutations"/> returns the list of those
##  permutations of conjugacy classes of the character table <A>tbl</A>
##  that are induced by the action of the group elements in the list
##  <A>elms</A>.
##  If an element of <A>elms</A> does <E>not</E> act on the classes of
##  <A>tbl</A> then either <K>fail</K> or a (meaningless) permutation
##  is returned.
##  <P/>
##  In the call with three arguments, the second argument <A>chi</A> must be
##  (the values list of) a class function of <A>tbl</A>,
##  and the returned permutations will at least yield the same
##  conjugate class functions as the permutations of classes that are induced
##  by <A>elms</A>,
##  that is, the images are not necessarily the same for orbits on which
##  <A>chi</A> is constant.
##  <P/>
##  This function is used for computing conjugate class functions.
##  </Description>
##  </ManSection>
##
DeclareOperation( "CorrespondingPermutations",
    [ IsOrdinaryTable, IsHomogeneousList ] );
DeclareOperation( "CorrespondingPermutations",
    [ IsOrdinaryTable, IsClassFunction, IsHomogeneousList ] );


#############################################################################
##
##  5. Printing Class Functions
##
##  <#GAPDoc Label="[5]{ctblfuns}">
##  <ManSection>
##  <Meth Name="ViewObj" Arg='chi' Label="for class functions"/>
##
##  <Description>
##  The default <Ref Func="ViewObj"/> methods for class functions
##  print one of the strings <C>"ClassFunction"</C>,
##  <C>"VirtualCharacter"</C>, <C>"Character"</C> (depending on whether the
##  class function is known to be a character or virtual character,
##  see&nbsp;<Ref Func="IsCharacter"/>, <Ref Func="IsVirtualCharacter"/>),
##  followed by the <Ref Func="ViewObj"/> output for the underlying character
##  table (see&nbsp;<Ref Sect="Printing Character Tables"/>),
##  and the list of values.
##  The table is chosen (and not the group) in order to distinguish class
##  functions of different underlying characteristic
##  (see&nbsp;<Ref Attr="UnderlyingCharacteristic" Label="for a character"/>).
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Meth Name="PrintObj" Arg='chi' Label="for class functions"/>
##
##  <Description>
##  The default <Ref Func="PrintObj"/> method for class functions
##  does the same as <Ref Func="ViewObj"/>,
##  except that the character table is is <Ref Func="Print"/>-ed instead of
##  <Ref Func="View"/>-ed.
##  <P/>
##  <E>Note</E> that if a class function is shown only with one of the
##  strings <C>"ClassFunction"</C>, <C>"VirtualCharacter"</C>,
##  it may still be that it is in fact a character;
##  just this was not known at the time when the class function was printed.
##  <P/>
##  In order to reduce the space that is needed to print a class function,
##  it may be useful to give a name (see&nbsp;<Ref Func="Name"/>) to the
##  underlying character table.
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Meth Name="Display" Arg='chi' Label="for class functions"/>
##
##  <Description>
##  The default <Ref Func="Display"/> method for a class function <A>chi</A>
##  calls <Ref Func="Display"/> for its underlying character table
##  (see&nbsp;<Ref Sect="Printing Character Tables"/>),
##  with <A>chi</A> as the only entry in the <C>chars</C> list of the options
##  record.
##  <P/>
##  <Example><![CDATA[
##  gap> chi:= TrivialCharacter( CharacterTable( "A5" ) );
##  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
##  gap> Display( chi );
##  A5
##  
##       2  2  2  .  .  .
##       3  1  .  1  .  .
##       5  1  .  .  1  1
##  
##         1a 2a 3a 5a 5b
##      2P 1a 1a 3a 5b 5a
##      3P 1a 2a 1a 5b 5a
##      5P 1a 2a 3a 1a 1a
##  
##  Y.1     1  1  1  1  1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
##  6. Creating Class Functions from Values Lists
##


#############################################################################
##
#O  ClassFunction( <tbl>, <values> )
#O  ClassFunction( <G>, <values> )
##
##  <#GAPDoc Label="ClassFunction">
##  <ManSection>
##  <Oper Name="ClassFunction" Arg='tbl, values'
##   Label="for a character table and a list"/>
##  <Oper Name="ClassFunction" Arg='G, values'
##   Label="for a group and a list"/>
##
##  <Description>
##  In the first form,
##  <Ref Oper="ClassFunction" Label="for a character table and a list"/>
##  returns the class function of the character table <A>tbl</A> with values
##  given by the list <A>values</A> of cyclotomics.
##  In the second form, <A>G</A> must be a group,
##  and the class function of its ordinary character table is returned.
##  <P/>
##  Note that <A>tbl</A> determines the underlying characteristic of the
##  returned class function
##  (see&nbsp;<Ref Attr="UnderlyingCharacteristic" Label="for a character"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ClassFunction", [ IsNearlyCharacterTable, IsDenseList ] );
DeclareOperation( "ClassFunction", [ IsGroup, IsDenseList ] );


#############################################################################
##
#O  VirtualCharacter( <tbl>, <values> )
#O  VirtualCharacter( <G>, <values> )
##
##  <#GAPDoc Label="VirtualCharacter">
##  <ManSection>
##  <Oper Name="VirtualCharacter" Arg='tbl, values'
##   Label="for a character table and a list"/>
##  <Oper Name="VirtualCharacter" Arg='G, values'
##   Label="for a group and a list"/>
##
##  <Description>
##  <Ref Oper="VirtualCharacter" Label="for a character table and a list"/>
##  returns the virtual character
##  (see&nbsp;<Ref Func="IsVirtualCharacter"/>)
##  of the character table <A>tbl</A> or the group <A>G</A>,
##  respectively, with values given by the list <A>values</A>.
##  <P/>
##  It is <E>not</E> checked whether the given values really describe a
##  virtual character.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "VirtualCharacter",
    [ IsNearlyCharacterTable, IsDenseList ] );
DeclareOperation( "VirtualCharacter", [ IsGroup, IsDenseList ] );


#############################################################################
##
#O  Character( <tbl>, <values> )
##
##  <#GAPDoc Label="Character">
##  <ManSection>
##  <Oper Name="Character" Arg='tbl, values'
##   Label="for a character table and a list"/>
##  <Oper Name="Character" Arg='G, values'
##   Label="for a group and a list"/>
##
##  <Description>
##  <Ref Oper="Character" Label="for a character table and a list"/>
##  returns the character (see&nbsp;<Ref Func="IsCharacter"/>)
##  of the character table <A>tbl</A> or the group <A>G</A>,
##  respectively, with values given by the list <A>values</A>.
##  <P/>
##  It is <E>not</E> checked whether the given values really describe a
##  character.
##  <Example><![CDATA[
##  gap> g:= DihedralGroup( 8 );  tbl:= CharacterTable( g );
##  <pc group of size 8 with 3 generators>
##  CharacterTable( <pc group of size 8 with 3 generators> )
##  gap> SetName( tbl, "D8" );
##  gap> phi:= ClassFunction( g, [ 1, -1, 0, 2, -2 ] );
##  ClassFunction( D8, [ 1, -1, 0, 2, -2 ] )
##  gap> psi:= ClassFunction( tbl,
##  >              List( Irr( g ), chi -> ScalarProduct( chi, phi ) ) );
##  ClassFunction( D8, [ -3/8, 9/8, 5/8, 1/8, -1/4 ] )
##  gap> chi:= VirtualCharacter( g, [ 0, 0, 8, 0, 0 ] );
##  VirtualCharacter( D8, [ 0, 0, 8, 0, 0 ] )
##  gap> reg:= Character( tbl, [ 8, 0, 0, 0, 0 ] );
##  Character( D8, [ 8, 0, 0, 0, 0 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Character", [ IsNearlyCharacterTable, IsDenseList ] );
DeclareOperation( "Character", [ IsGroup, IsDenseList ] );


#############################################################################
##
#F  ClassFunctionSameType( <tbl>, <chi>, <values> )
##
##  <#GAPDoc Label="ClassFunctionSameType">
##  <ManSection>
##  <Func Name="ClassFunctionSameType" Arg='tbl, chi, values'/>
##
##  <Description>
##  Let <A>tbl</A> be a character table, <A>chi</A> a class function object
##  (<E>not</E> necessarily a class function of <A>tbl</A>),
##  and <A>values</A> a list of cyclotomics.
##  <Ref Func="ClassFunctionSameType"/> returns the class function
##  <M>\psi</M> of <A>tbl</A> with values list <A>values</A>,
##  constructed with
##  <Ref Func="ClassFunction" Label="for a character table and a list"/>.
##  <P/>
##  If <A>chi</A> is known to be a (virtual) character then <M>\psi</M>
##  is also known to be a (virtual) character.
##  <P/>
##  <Example><![CDATA[
##  gap> h:= Centre( g );;
##  gap> centbl:= CharacterTable( h );;  SetName( centbl, "C2" );
##  gap> ClassFunctionSameType( centbl, phi, [ 1, 1 ] );
##  ClassFunction( C2, [ 1, 1 ] )
##  gap> ClassFunctionSameType( centbl, chi, [ 1, 1 ] );
##  VirtualCharacter( C2, [ 1, 1 ] )
##  gap> ClassFunctionSameType( centbl, reg, [ 1, 1 ] );
##  Character( C2, [ 1, 1 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ClassFunctionSameType" );


#############################################################################
##
##  7. Creating Class Functions using Groups
##


#############################################################################
##
#A  TrivialCharacter( <tbl> )
#A  TrivialCharacter( <G> )
##
##  <#GAPDoc Label="TrivialCharacter">
##  <ManSection>
##  <Heading>TrivialCharacter</Heading>
##  <Attr Name="TrivialCharacter" Arg='tbl' Label="for a character table"/>
##  <Attr Name="TrivialCharacter" Arg='G' Label="for a group"/>
##
##  <Description>
##  is the <E>trivial character</E> of the group <A>G</A>
##  or its character table <A>tbl</A>, respectively.
##  This is the class function with value equal to <M>1</M> for each class.
##  <P/>
##  <Example><![CDATA[
##  gap> TrivialCharacter( CharacterTable( "A5" ) );
##  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
##  gap> TrivialCharacter( SymmetricGroup( 3 ) );
##  Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 1, 1, 1 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TrivialCharacter", IsNearlyCharacterTable );
DeclareAttribute( "TrivialCharacter", IsGroup );


#############################################################################
##
#A  NaturalCharacter( <G> )
#A  NaturalCharacter( <hom> )
##
##  <#GAPDoc Label="NaturalCharacter">
##  <ManSection>
##  <Attr Name="NaturalCharacter" Arg='G' Label="for a group"/>
##  <Attr Name="NaturalCharacter" Arg='hom' Label="for a homomorphism"/>
##
##  <Description>
##  If the argument is a permutation group <A>G</A> then
##  <Ref Attr="NaturalCharacter" Label="for a group"/>
##  returns the (ordinary) character of the natural permutation
##  representation of <A>G</A> on the set of moved points (see
##  <Ref Func="MovedPoints" Label="for a list or collection of permutations"/>),
##  that is, the value on each class is the number of points among the moved
##  points of <A>G</A> that are fixed by any permutation in that class.
##  <P/>
##  If the argument is a matrix group <A>G</A> in characteristic zero then
##  <Ref Attr="NaturalCharacter" Label="for a group"/> returns the
##  (ordinary) character of the natural matrix representation of <A>G</A>,
##  that is, the value on each class is the trace of any matrix in that class.
##  <P/>
##  If the argument is a group homomorphism <A>hom</A> whose image is a
##  permutation group or a matrix group then
##  <Ref Attr="NaturalCharacter" Label="for a homomorphism"/> returns the
##  restriction of the natural character of the image of <A>hom</A> to the
##  preimage of <A>hom</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> NaturalCharacter( SymmetricGroup( 3 ) );
##  Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 3, 1, 0 ] )
##  gap> NaturalCharacter( Group( [ [ 0, -1 ], [ 1, -1 ] ] ) );
##  Character( CharacterTable( Group([ [ [ 0, -1 ], [ 1, -1 ] ] ]) ), 
##  [ 2, -1, -1 ] )
##  gap> d8:= DihedralGroup( 8 );;  hom:= IsomorphismPermGroup( d8 );;
##  gap> NaturalCharacter( hom );
##  Character( CharacterTable( <pc group of size 8 with 3 generators> ), 
##  [ 8, 0, 0, 0, 0 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NaturalCharacter", IsGroup );
DeclareAttribute( "NaturalCharacter", IsGeneralMapping );


#############################################################################
##
#O  PermutationCharacter( <G>, <D>, <opr> )
#O  PermutationCharacter( <G>, <U> )
##
##  <#GAPDoc Label="PermutationCharacter">
##  <ManSection>
##  <Heading>PermutationCharacter</Heading>
##  <Oper Name="PermutationCharacter" Arg='G, D, opr'
##   Label="for a group, an action domain, and a function"/>
##  <Oper Name="PermutationCharacter" Arg='G, U' Label="for two groups"/>
##
##  <Description>
##  Called with a group <A>G</A>, an action domain or proper set <A>D</A>,
##  and an action function <A>opr</A>
##  (see Chapter&nbsp;<Ref Chap="Group Actions"/>),
##  <Ref Oper="PermutationCharacter"
##  Label="for a group, an action domain, and a function"/>
##  returns the <E>permutation character</E> of the action
##  of <A>G</A> on <A>D</A> via <A>opr</A>,
##  that is, the value on each class is the number of points in <A>D</A>
##  that are fixed by an element in this class under the action <A>opr</A>.
##  <P/>
##  If the arguments are a group <A>G</A> and a subgroup <A>U</A> of <A>G</A>
##  then <Ref Oper="PermutationCharacter" Label="for two groups"/> returns
##  the permutation character of the action of <A>G</A> on the right cosets
##  of <A>U</A> via right multiplication.
##  <P/>
##  To compute the permutation character of a
##  <E>transitive permutation group</E>
##  <A>G</A> on the cosets of a point stabilizer <A>U</A>,
##  the attribute <Ref Func="NaturalCharacter" Label="for a group"/>
##  of <A>G</A> can be used instead of
##  <C>PermutationCharacter( <A>G</A>, <A>U</A> )</C>.
##  <P/>
##  More facilities concerning permutation characters are the transitivity
##  test (see Section&nbsp;<Ref Sect="Operations for Class Functions"/>)
##  and several tools for computing possible permutation characters
##  (see&nbsp;<Ref Sect="Possible Permutation Characters"/>,
##  <Ref Sect="Computing Possible Permutation Characters"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> PermutationCharacter( GL(2,2), AsSSortedList( GF(2)^2 ), OnRight );
##  Character( CharacterTable( SL(2,2) ), [ 4, 2, 1 ] )
##  gap> s3:= SymmetricGroup( 3 );;  a3:= DerivedSubgroup( s3 );;
##  gap> PermutationCharacter( s3, a3 );
##  Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 2, 0, 2 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PermutationCharacter",
    [ IsGroup, IsCollection, IsFunction ] );
DeclareOperation( "PermutationCharacter", [ IsGroup, IsGroup ] );


#############################################################################
##
##  8. Operations for Class Functions
##
##  <#GAPDoc Label="[6]{ctblfuns}">
##  In the description of the following operations,
##  the optional first argument <A>tbl</A> is needed only if the argument
##  <A>chi</A> is a plain list and not a class function object.
##  In this case, <A>tbl</A> must always be the character table of which
##  <A>chi</A> shall be regarded as a class function.
##  <#/GAPDoc>
##


#############################################################################
##
#P  IsCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="IsCharacter">
##  <ManSection>
##  <Prop Name="IsCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  <Index>ordinary character</Index>
##  An <E>ordinary character</E> of a group <M>G</M> is a class function of
##  <M>G</M> whose values are the traces of a complex matrix representation
##  of <M>G</M>.
##  <P/>
##  <Index>Brauer character</Index>
##  A <E>Brauer character</E> of <M>G</M> in characteristic <M>p</M> is
##  a class function of <M>G</M> whose values are the complex lifts of a
##  matrix representation of <M>G</M> with image a finite field of
##  characteristic <M>p</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsCharacter", IsClassFunction );
DeclareOperation( "IsCharacter", [ IsCharacterTable, IsHomogeneousList ] );


#############################################################################
##
#P  IsVirtualCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="IsVirtualCharacter">
##  <ManSection>
##  <Prop Name="IsVirtualCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  <Index>virtual character</Index>
##  A <E>virtual character</E> is a class function that can be written as the
##  difference of two proper characters (see&nbsp;<Ref Func="IsCharacter"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsVirtualCharacter", IsClassFunction );
DeclareOperation( "IsVirtualCharacter",
    [ IsCharacterTable, IsHomogeneousList ] );


#############################################################################
##
#M  IsVirtualCharacter( <chi> ) . . . . . . . . . . . . . . . for a character
##
##  Each character is of course a virtual character.
##
InstallTrueMethod( IsVirtualCharacter, IsCharacter and IsClassFunction );


#############################################################################
##
#P  IsIrreducibleCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="IsIrreducibleCharacter">
##  <ManSection>
##  <Prop Name="IsIrreducibleCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  <Index>irreducible character</Index>
##  A character is <E>irreducible</E> if it cannot be written as the sum of
##  two characters.
##  For ordinary characters this can be checked using the scalar product
##  of class functions
##  (see&nbsp;<Ref Func="ScalarProduct" Label="for characters"/>).
##  For Brauer characters there is no generic method for checking
##  irreducibility.
##  <P/>
##  <Example><![CDATA[
##  gap> S4:= SymmetricGroup( 4 );;  SetName( S4, "S4" );
##  gap> psi:= ClassFunction( S4, [ 1, 1, 1, -2, 1 ] );
##  ClassFunction( CharacterTable( S4 ), [ 1, 1, 1, -2, 1 ] )
##  gap> IsVirtualCharacter( psi );
##  true
##  gap> IsCharacter( psi );
##  false
##  gap> chi:= ClassFunction( S4, SizesCentralizers( CharacterTable( S4 ) ) );
##  ClassFunction( CharacterTable( S4 ), [ 24, 4, 8, 3, 4 ] )
##  gap> IsCharacter( chi );
##  true
##  gap> IsIrreducibleCharacter( chi );
##  false
##  gap> IsIrreducibleCharacter( TrivialCharacter( S4 ) );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsIrreducibleCharacter", IsClassFunction );
DeclareOperation( "IsIrreducibleCharacter",
    [ IsCharacterTable, IsHomogeneousList ] );


#############################################################################
##
#O  ScalarProduct( [<tbl>, ]<chi>, <psi> )
##
##  <#GAPDoc Label="ScalarProduct:ctblfuns">
##  <ManSection>
##  <Oper Name="ScalarProduct" Arg='[tbl, ]chi, psi' Label="for characters"/>
##
##  <Returns>
##  the scalar product of the class functions <A>chi</A> and <A>psi</A>,
##  which belong to the same character table <A>tbl</A>.
##  </Returns>
##  <Description>
##  <Index Subkey="of a group character">constituent</Index>
##  <Index Subkey="a group character">decompose</Index>
##  <Index Subkey="of constituents of a group character">multiplicity</Index>
##  <Index Subkey="of group characters">inner product</Index>
##  If <A>chi</A> and <A>psi</A> are class function objects,
##  the argument <A>tbl</A> is not needed,
##  but <A>tbl</A> is necessary if at least one of <A>chi</A>, <A>psi</A>
##  is just a plain list.
##  <P/>
##  The scalar product of two <E>ordinary</E> class functions <M>\chi</M>,
##  <M>\psi</M> of a group <M>G</M> is defined as
##  <P/>
##  <M>( \sum_{{g \in G}} \chi(g) \psi(g^{{-1}}) ) / |G|</M>.
##  <P/>
##  For two <E><M>p</M>-modular</E> class functions,
##  the scalar product is defined as
##  <M>( \sum_{{g \in S}} \chi(g) \psi(g^{{-1}}) ) / |G|</M>,
##  where <M>S</M> is the set of <M>p</M>-regular elements in <M>G</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ScalarProduct",
    [ IsCharacterTable, IsRowVector, IsRowVector ] );


#############################################################################
##
#O  MatScalarProducts( [<tbl>, ]<list>[, <list2>] )
##
##  <#GAPDoc Label="MatScalarProducts">
##  <ManSection>
##  <Oper Name="MatScalarProducts" Arg='[tbl, ]list[, list2]'/>
##
##  <Description>
##  Called with two lists <A>list</A>, <A>list2</A> of class functions of the
##  same character table (which may be given as the argument <A>tbl</A>),
##  <Ref Oper="MatScalarProducts"/> returns the matrix of scalar products
##  (see <Ref Oper="ScalarProduct" Label="for characters"/>)
##  More precisely, this matrix contains in the <M>i</M>-th row the list of
##  scalar products of <M><A>list2</A>[i]</M>
##  with the entries of <A>list</A>.
##  <P/>
##  If only one list <A>list</A> of class functions is given then
##  a lower triangular matrix of scalar products is returned,
##  containing (for <M>j \leq i</M>) in the <M>i</M>-th row in column
##  <M>j</M> the value
##  <C>ScalarProduct</C><M>( <A>tbl</A>, <A>list</A>[j], <A>list</A>[i] )</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MatScalarProducts",
    [ IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "MatScalarProducts",
    [ IsOrdinaryTable, IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "MatScalarProducts", [ IsHomogeneousList ] );
DeclareOperation( "MatScalarProducts",
    [ IsOrdinaryTable, IsHomogeneousList ] );


#############################################################################
##
#A  Norm( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="Norm:ctblfuns">
##  <ManSection>
##  <Attr Name="Norm" Arg='[tbl, ]chi' Label="for a class function"/>
##
##  <Description>
##  <Index Subkey="of character" Key="Norm"><C>Norm</C></Index>
##  For an ordinary class function <A>chi</A> of the group <M>G</M>, say,
##  we have <M><A>chi</A> = \sum_{{\chi \in Irr(G)}} a_{\chi} \chi</M>,
##  with complex coefficients <M>a_{\chi}</M>.
##  The <E>norm</E> of <A>chi</A> is defined as
##  <M>\sum_{{\chi \in Irr(G)}} a_{\chi} \overline{{a_{\chi}}}</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "A5" );;
##  gap> ScalarProduct( TrivialCharacter( tbl ), Sum( Irr( tbl ) ) );
##  1
##  gap> ScalarProduct( tbl, [ 1, 1, 1, 1, 1 ], Sum( Irr( tbl ) ) );
##  1
##  gap> tbl2:= tbl mod 2;  
##  BrauerTable( "A5", 2 )
##  gap> chi:= Irr( tbl2 )[1];
##  Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] )
##  gap> ScalarProduct( chi, chi );
##  3/4
##  gap> ScalarProduct( tbl2, [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ] );
##  3/4
##  gap> chars:= Irr( tbl ){ [ 2 .. 4 ] };;
##  gap> chars:= Set( Tensored( chars, chars ) );;
##  gap> MatScalarProducts( Irr( tbl ), chars );
##  [ [ 0, 0, 0, 1, 1 ], [ 1, 1, 0, 0, 1 ], [ 1, 0, 1, 0, 1 ], 
##    [ 0, 1, 0, 1, 1 ], [ 0, 0, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ] ]
##  gap> MatScalarProducts( tbl, chars );
##  [ [ 2 ], [ 1, 3 ], [ 1, 2, 3 ], [ 2, 2, 1, 3 ], [ 2, 1, 2, 2, 3 ], 
##    [ 2, 3, 3, 3, 3, 5 ] ]
##  gap> List( chars, Norm );
##  [ 2, 3, 3, 3, 3, 5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Norm", IsClassFunction );
DeclareOperation( "Norm", [ IsOrdinaryTable, IsHomogeneousList ] );


#############################################################################
##
#A  CentreOfCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="CentreOfCharacter">
##  <ManSection>
##  <Attr Name="CentreOfCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  <Index Subkey="of a character">centre</Index>
##  For a character <A>chi</A> of the group <M>G</M>, say,
##  <Ref Func="CentreOfCharacter"/> returns the <E>centre</E> of <A>chi</A>,
##  that is, the normal subgroup of all those elements of <M>G</M> for which
##  the quotient of the value of <A>chi</A> by the degree of <A>chi</A> is
##  a root of unity.
##  <P/>
##  If the underlying character table of <A>psi</A> does not store the group
##  <M>G</M> then an error is signalled.
##  (See&nbsp;<Ref Attr="ClassPositionsOfCentre" Label="for a character"/>
##  for a way to handle the centre implicitly,
##  by listing the positions of conjugacy classes in the centre.)
##  <P/>
##  <Example><![CDATA[
##  gap> List( Irr( S4 ), CentreOfCharacter );
##  [ Group([ (), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4) ]), Group(()), 
##    Group([ (1,2)(3,4), (1,3)(2,4) ]), Group(()), 
##    Group([ (), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4) ]) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CentreOfCharacter", IsClassFunction );
DeclareOperation( "CentreOfCharacter",
    [ IsOrdinaryTable, IsHomogeneousList ] );

DeclareSynonym( "CenterOfCharacter", CentreOfCharacter );


#############################################################################
##
#A  ClassPositionsOfCentre( <chi> )
##
##  <#GAPDoc Label="ClassPositionsOfCentre:ctblfuns">
##  <ManSection>
##  <Attr Name="ClassPositionsOfCentre" Arg='chi' Label="for a character"/>
##
##  <Description>
##  is the list of positions of classes forming the centre of the character
##  <A>chi</A> (see&nbsp;<Ref Func="CentreOfCharacter"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> List( Irr( S4 ), ClassPositionsOfCentre );
##  [ [ 1, 2, 3, 4, 5 ], [ 1 ], [ 1, 3 ], [ 1 ], [ 1, 2, 3, 4, 5 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ClassPositionsOfCentre", IsHomogeneousList );


#############################################################################
##
#A  ConstituentsOfCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="ConstituentsOfCharacter">
##  <ManSection>
##  <Attr Name="ConstituentsOfCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  is the set of irreducible characters that occur in the decomposition of
##  the (virtual) character <A>chi</A> with nonzero coefficient.
##  <P/>
##  <Example><![CDATA[
##  gap> nat:= NaturalCharacter( S4 );
##  Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
##  gap> ConstituentsOfCharacter( nat );
##  [ Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( S4 ), [ 3, 1, -1, 0, -1 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ConstituentsOfCharacter", IsClassFunction );
DeclareOperation( "ConstituentsOfCharacter",
    [ IsCharacterTable, IsHomogeneousList ] );


#############################################################################
##
#A  DegreeOfCharacter( <chi> )
##
##  <#GAPDoc Label="DegreeOfCharacter">
##  <ManSection>
##  <Attr Name="DegreeOfCharacter" Arg='chi'/>
##
##  <Description>
##  is the value of the character <A>chi</A> on the identity element.
##  This can also be obtained as <A>chi</A><C>[1]</C>.
##  <P/>
##  <Example><![CDATA[
##  gap> List( Irr( S4 ), DegreeOfCharacter );
##  [ 1, 3, 2, 3, 1 ]
##  gap> nat:= NaturalCharacter( S4 );
##  Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
##  gap> nat[1];
##  4
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DegreeOfCharacter", IsClassFunction );


#############################################################################
##
#O  InertiaSubgroup( [<tbl>, ]<G>, <chi> )
##
##  <#GAPDoc Label="InertiaSubgroup">
##  <ManSection>
##  <Oper Name="InertiaSubgroup" Arg='[tbl, ]G, chi'/>
##
##  <Description>
##  Let <A>chi</A> be a character of the group <M>H</M>, say,
##  and <A>tbl</A> the character table of <M>H</M>;
##  if the argument <A>tbl</A> is not given then the underlying character
##  table of <A>chi</A> (see&nbsp;<Ref Func="UnderlyingCharacterTable"/>) is
##  used instead.
##  Furthermore, let <A>G</A> be a group that contains <M>H</M> as a normal
##  subgroup.
##  <P/>
##  <Ref Func="InertiaSubgroup"/> returns the stabilizer in <A>G</A> of
##  <A>chi</A>, w.r.t.&nbsp;the action of <A>G</A> on the classes of <M>H</M>
##  via conjugation.
##  In other words, <Ref Func="InertiaSubgroup"/> returns the group of all
##  those elements <M>g \in <A>G</A></M> that satisfy
##  <M><A>chi</A>^g = <A>chi</A></M>.
##  <P/>
##  <Example><![CDATA[
##  gap> der:= DerivedSubgroup( S4 );
##  Alt( [ 1 .. 4 ] )
##  gap> List( Irr( der ), chi -> InertiaSubgroup( S4, chi ) );
##  [ S4, Alt( [ 1 .. 4 ] ), Alt( [ 1 .. 4 ] ), S4 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InertiaSubgroup", [ IsGroup, IsClassFunction ] );
DeclareOperation( "InertiaSubgroup",
    [ IsOrdinaryTable, IsGroup, IsHomogeneousList ] );


#############################################################################
##
#A  KernelOfCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="KernelOfCharacter">
##  <ManSection>
##  <Attr Name="KernelOfCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  For a class function <A>chi</A> of the group <M>G</M>, say,
##  <Ref Func="KernelOfCharacter"/> returns the normal subgroup of <M>G</M>
##  that is formed by those conjugacy classes for which the value of
##  <A>chi</A> equals the degree of <A>chi</A>.
##  If the underlying character table of <A>chi</A> does not store the group
##  <M>G</M> then an error is signalled.
##  (See&nbsp;<Ref Func="ClassPositionsOfKernel"/> for a way to handle the
##  kernel implicitly,
##  by listing the positions of conjugacy classes in the kernel.)
##  <P/>
##  The returned group is the kernel of any representation of <M>G</M> that
##  affords <A>chi</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> List( Irr( S4 ), KernelOfCharacter );
##  [ Alt( [ 1 .. 4 ] ), Group(()), Group([ (1,2)(3,4), (1,3)(2,4) ]), 
##    Group(()), Group([ (), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4) ]) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "KernelOfCharacter", IsClassFunction );
DeclareOperation( "KernelOfCharacter",
    [ IsOrdinaryTable, IsHomogeneousList ] );


#############################################################################
##
#A  ClassPositionsOfKernel( <chi> )
##
##  <#GAPDoc Label="ClassPositionsOfKernel">
##  <ManSection>
##  <Attr Name="ClassPositionsOfKernel" Arg='chi'/>
##
##  <Description>
##  is the list of positions of those conjugacy classes that form the kernel
##  of the character <A>chi</A>, that is, those positions with character
##  value equal to the character degree.
##  <P/>
##  <Example><![CDATA[
##  gap> List( Irr( S4 ), ClassPositionsOfKernel );
##  [ [ 1, 3, 4 ], [ 1 ], [ 1, 3 ], [ 1 ], [ 1, 2, 3, 4, 5 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ClassPositionsOfKernel", IsHomogeneousList );


#############################################################################
##
#O  CycleStructureClass( [<tbl>, ]<chi>, <class> )
##
##  <#GAPDoc Label="CycleStructureClass">
##  <ManSection>
##  <Oper Name="CycleStructureClass" Arg='[tbl, ]chi, class'/>
##
##  <Description>
##  Let <A>permchar</A> be a permutation character, and <A>class</A> be the
##  position of a conjugacy class of the character table of <A>permchar</A>.
##  <Ref Oper="CycleStructureClass"/> returns a list describing
##  the cycle structure of each element in class <A>class</A> in the
##  underlying permutation representation, in the same format as the result
##  of <Ref Func="CycleStructurePerm"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> nat:= NaturalCharacter( S4 );
##  Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
##  gap> List( [ 1 .. 5 ], i -> CycleStructureClass( nat, i ) );
##  [ [  ], [ 1 ], [ 2 ], [ , 1 ], [ ,, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CycleStructureClass",
    [ IsOrdinaryTable, IsHomogeneousList, IsPosInt ] );
DeclareOperation( "CycleStructureClass", [ IsClassFunction, IsPosInt ] );


#############################################################################
##
#P  IsTransitive( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="IsTransitive:ctblfuns">
##  <ManSection>
##  <Prop Name="IsTransitive" Arg='[tbl, ]chi' Label="for a character"/>
##
##  <Description>
##  For a permutation character <A>chi</A> of the group <M>G</M> that
##  corresponds to an action on the <M>G</M>-set <M>\Omega</M>
##  (see&nbsp;<Ref Func="PermutationCharacter"
##  Label="for a group, an action domain, and a function"/>),
##  <Ref Prop="IsTransitive" Label="for a group, an action domain, etc."/>
##  returns <K>true</K> if the action of <M>G</M> on <M>\Omega</M> is
##  transitive, and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsTransitive", IsClassFunction );
DeclareOperation( "IsTransitive", [ IsCharacterTable, IsHomogeneousList ] );


#############################################################################
##
#A  Transitivity( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="Transitivity:ctblfuns">
##  <ManSection>
##  <Attr Name="Transitivity" Arg='[tbl, ]chi' Label="for a character"/>
##
##  <Description>
##  For a permutation character <A>chi</A> of the group <M>G</M>
##  that corresponds to an action on the <M>G</M>-set <M>\Omega</M>
##  (see&nbsp;<Ref Func="PermutationCharacter"
##  Label="for a group, an action domain, and a function"/>),
##  <Ref Attr="Transitivity" Label="for a character"/> returns the maximal
##  nonnegative integer <M>k</M> such that the action of <M>G</M> on
##  <M>\Omega</M> is <M>k</M>-transitive.
##  <P/>
##  <Example><![CDATA[
##  gap> IsTransitive( nat );  Transitivity( nat );
##  true
##  4
##  gap> Transitivity( 2 * TrivialCharacter( S4 ) );
##  0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Transitivity", IsClassFunction );
DeclareOperation( "Transitivity", [ IsOrdinaryTable, IsHomogeneousList ] );


#############################################################################
##
#A  CentralCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="CentralCharacter">
##  <ManSection>
##  <Attr Name="CentralCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  <Index>central character</Index>
##  For a character <A>chi</A> of the group <M>G</M>, say,
##  <Ref Func="CentralCharacter"/> returns
##  the <E>central character</E> of <A>chi</A>.
##  <P/>
##  The central character of <M>\chi</M> is the class function
##  <M>\omega_{\chi}</M> defined by
##  <M>\omega_{\chi}(g) = |g^G| \cdot \chi(g)/\chi(1)</M> for each
##  <M>g \in G</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CentralCharacter", IsClassFunction );
DeclareOperation( "CentralCharacter",
    [ IsCharacterTable, IsHomogeneousList ] );


#############################################################################
##
#A  DeterminantOfCharacter( [<tbl>, ]<chi> )
##
##  <#GAPDoc Label="DeterminantOfCharacter">
##  <ManSection>
##  <Attr Name="DeterminantOfCharacter" Arg='[tbl, ]chi'/>
##
##  <Description>
##  <Index>determinant character</Index>
##  <Ref Func="DeterminantOfCharacter"/> returns the
##  <E>determinant character</E> of the character <A>chi</A>.
##  This is defined to be the character obtained by taking the determinant of
##  representing matrices of any representation affording <A>chi</A>;
##  the determinant can be computed using <Ref Func="EigenvaluesChar"/>.
##  <P/>
##  It is also possible to call <Ref Func="Determinant"/> instead of
##  <Ref Func="DeterminantOfCharacter"/>.
##  <P/>
##  Note that the determinant character is well-defined for virtual
##  characters.
##  <P/>
##  <Example><![CDATA[
##  gap> CentralCharacter( TrivialCharacter( S4 ) );
##  ClassFunction( CharacterTable( S4 ), [ 1, 6, 3, 8, 6 ] )
##  gap> DeterminantOfCharacter( Irr( S4 )[3] );
##  Character( CharacterTable( S4 ), [ 1, -1, 1, 1, -1 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DeterminantOfCharacter", IsClassFunction );
DeclareOperation( "DeterminantOfCharacter",
    [ IsCharacterTable, IsHomogeneousList ] );


#############################################################################
##
#O  EigenvaluesChar( [<tbl>, ]<chi>, <class> )
##
##  <#GAPDoc Label="EigenvaluesChar">
##  <ManSection>
##  <Oper Name="EigenvaluesChar" Arg='[tbl, ]chi, class'/>
##
##  <Description>
##  Let <A>chi</A> be a character of the group <M>G</M>, say.
##  For an element <M>g \in G</M> in the <A>class</A>-th conjugacy class,
##  of order <M>n</M>, let <M>M</M> be a matrix of a representation affording
##  <A>chi</A>.
##  <P/>
##  <Ref Func="EigenvaluesChar"/> returns the list of length <M>n</M>
##  where at position <M>k</M> the multiplicity
##  of <C>E</C><M>(n)^k = \exp(2 \pi i k / n)</M>
##  as an eigenvalue of <M>M</M> is stored.
##  <P/>
##  We have
##  <C><A>chi</A>[ <A>class</A> ] = List( [ 1 .. n ], k -> E(n)^k )
##           * EigenvaluesChar( <A>tbl</A>, <A>chi</A>, <A>class</A> )</C>.
##  <P/>
##  It is also possible to call <Ref Func="Eigenvalues"/> instead of
##  <Ref Func="EigenvaluesChar"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> chi:= Irr( CharacterTable( "A5" ) )[2];
##  Character( CharacterTable( "A5" ), 
##  [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] )
##  gap> List( [ 1 .. 5 ], i -> Eigenvalues( chi, i ) );
##  [ [ 3 ], [ 2, 1 ], [ 1, 1, 1 ], [ 0, 1, 1, 0, 1 ], [ 1, 0, 0, 1, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EigenvaluesChar", [ IsClassFunction, IsPosInt ] );
DeclareOperation( "EigenvaluesChar",
    [ IsCharacterTable, IsHomogeneousList, IsPosInt ] );


#############################################################################
##
#O  Tensored( <chars1>, <chars2> )
##
##  <#GAPDoc Label="Tensored">
##  <ManSection>
##  <Oper Name="Tensored" Arg='chars1, chars2'/>
##
##  <Description>
##  Let <A>chars1</A> and <A>chars2</A> be lists of (values lists of) class
##  functions of the same character table.
##  <Ref Func="Tensored"/> returns the list of tensor products of all entries
##  in <A>chars1</A> with all entries in <A>chars2</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> irra5:= Irr( CharacterTable( "A5" ) );;
##  gap> chars1:= irra5{ [ 1 .. 3 ] };;  chars2:= irra5{ [ 2, 3 ] };;
##  gap> Tensored( chars1, chars2 );
##  [ Character( CharacterTable( "A5" ), 
##      [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 9, 1, 0, -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4, 
##        -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4 ] ), 
##    Character( CharacterTable( "A5" ), [ 9, 1, 0, -1, -1 ] ), 
##    Character( CharacterTable( "A5" ), [ 9, 1, 0, -1, -1 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 9, 1, 0, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4, 
##        -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Tensored", [ IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
##  9. Restricted and Induced Class Functions
##
##  <#GAPDoc Label="[7]{ctblfuns}">
##  For restricting a class function of a group <M>G</M> to a subgroup
##  <M>H</M> and for inducing a class function of <M>H</M> to <M>G</M>,
##  the <E>class fusion</E> from <M>H</M> to <M>G</M> must be known
##  (see&nbsp;<Ref Sect="Class Fusions between Character Tables"/>).
##  <P/>
##  <Index>inflated class functions</Index>
##  If <M>F</M> is the factor group of <M>G</M> by the normal subgroup
##  <M>N</M> then each class function of <M>F</M> can be naturally regarded
##  as a class function of <M>G</M>, with <M>N</M> in its kernel.
##  For a class function of <M>F</M>, the corresponding class function of
##  <M>G</M> is called the <E>inflated</E> class function.
##  Restriction and inflation are in principle the same,
##  namely indirection of a class function by the appropriate fusion map,
##  and thus no extra operation is needed for this process.
##  But note that contrary to the case of a subgroup fusion, the factor
##  fusion can in general not be computed from the groups <M>G</M> and
##  <M>F</M>;
##  either one needs the natural homomorphism, or the factor fusion to the
##  character table of <M>F</M> must be stored on the table of <M>G</M>.
##  This explains the different syntax for computing restricted and inflated
##  class functions.
##  <P/>
##  In the following,
##  the meaning of the optional first argument <A>tbl</A> is the same as in
##  Section&nbsp;<Ref Sect="Operations for Class Functions"/>.
##  <#/GAPDoc>
##


#############################################################################
##
#O  RestrictedClassFunction( [<tbl>, ]<chi>, <H> )
#O  RestrictedClassFunction( [<tbl>, ]<chi>, <hom> )
#O  RestrictedClassFunction( [<tbl>, ]<chi>, <subtbl> )
##
##  <#GAPDoc Label="RestrictedClassFunction">
##  <ManSection>
##  <Oper Name="RestrictedClassFunction" Arg='[tbl, ]chi, target'/>
##
##  <Description>
##  Let <A>chi</A> be a class function of the group <M>G</M>, say,
##  and let <A>target</A> be either a subgroup <M>H</M> of <M>G</M>
##  or an injective homomorphism from <M>H</M> to <M>G</M>
##  or the character table of <A>H</A>.
##  Then <Ref Oper="RestrictedClassFunction"/> returns the class function of
##  <M>H</M> obtained by restricting <A>chi</A> to <M>H</M>.
##  <P/>
##  If <A>chi</A> is a class function of a <E>factor group</E> <M>G</M>of
##  <M>H</M>, where <A>target</A> is either the group <M>H</M>
##  or a homomorphism from <M>H</M> to <M>G</M>
##  or the character table of <M>H</M>
##  then the restriction can be computed in the case of the homomorphism;
##  in the other cases, this is possible only if the factor fusion from
##  <M>H</M> to <M>G</M> is stored on the character table of <M>H</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RestrictedClassFunction", [ IsClassFunction, IsGroup ] );
DeclareOperation( "RestrictedClassFunction",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsGroup ] );
DeclareOperation( "RestrictedClassFunction",
    [ IsClassFunction, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunction",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunction",
    [ IsClassFunction, IsNearlyCharacterTable ] );
DeclareOperation( "RestrictedClassFunction",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsNearlyCharacterTable ] );


#############################################################################
##
#O  RestrictedClassFunctions( [<tbl>, ]<chars>, <H> )
#O  RestrictedClassFunctions( [<tbl>, ]<chars>, <hom> )
#O  RestrictedClassFunctions( [<tbl>, ]<chars>, <subtbl> )
##
##  <#GAPDoc Label="RestrictedClassFunctions">
##  <ManSection>
##  <Oper Name="RestrictedClassFunctions" Arg='[tbl, ]chars, target'/>
##
##  <Description>
##  <Ref Oper="RestrictedClassFunctions"/> is similar to
##  <Ref Oper="RestrictedClassFunction"/>,
##  the only difference is that it takes a list <A>chars</A> of class
##  functions instead of one class function,
##  and returns the list of restricted class functions.
##  <P/>
##  <Example><![CDATA[
##  gap> a5:= CharacterTable( "A5" );;  s5:= CharacterTable( "S5" );;
##  gap> RestrictedClassFunction( Irr( s5 )[2], a5 );
##  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
##  gap> RestrictedClassFunctions( Irr( s5 ), a5 );
##  [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 6, -2, 0, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ), 
##    Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ), 
##    Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ]
##  gap> hom:= NaturalHomomorphismByNormalSubgroup( S4, der );;
##  gap> RestrictedClassFunctions( Irr( Image( hom ) ), hom );
##  [ Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( S4 ), [ 1, -1, 1, 1, -1 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RestrictedClassFunctions", [ IsList, IsGroup ] );
DeclareOperation( "RestrictedClassFunctions",
    [ IsNearlyCharacterTable, IsList, IsGroup ] );
DeclareOperation( "RestrictedClassFunctions", [ IsList, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunctions",
    [ IsNearlyCharacterTable, IsList, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunctions",
    [ IsList, IsNearlyCharacterTable ] );
DeclareOperation( "RestrictedClassFunctions",
    [ IsNearlyCharacterTable, IsList, IsNearlyCharacterTable ] );


#############################################################################
##
#O  Restricted( <tbl>, <subtbl>, <chars> )
#O  Restricted( <tbl>, <subtbl>, <chars>, <specification> )
#O  Restricted( <chars>, <fusionmap> )
#O  Restricted( [<tbl>, ]<chi>, <H> )
#O  Restricted( [<tbl>, ]<chi>, <hom> )
#O  Restricted( [<tbl>, ]<chi>, <subtbl> )
#O  Restricted( [<tbl>, ]<chars>, <H> )
#O  Restricted( [<tbl>, ]<chars>, <hom> )
#O  Restricted( [<tbl>, ]<chars>, <subtbl> )
##
##  <ManSection>
##  <Oper Name="Restricted" Arg='tbl, subtbl, chars'/>
##  <Oper Name="Restricted" Arg='tbl, subtbl, chars, specification'/>
##  <Oper Name="Restricted" Arg='chars, fusionmap'/>
##  <Oper Name="Restricted" Arg='[tbl, ]chi, H'/>
##  <Oper Name="Restricted" Arg='[tbl, ]chi, hom'/>
##  <Oper Name="Restricted" Arg='[tbl, ]chi, subtbl'/>
##  <Oper Name="Restricted" Arg='[tbl, ]chars, H'/>
##  <Oper Name="Restricted" Arg='[tbl, ]chars, hom'/>
##  <Oper Name="Restricted" Arg='[tbl, ]chars, subtbl'/>
##
##  <Description>
##  This is mainly for convenience and compatibility with &GAP;&nbsp;3.
##  </Description>
##  </ManSection>
##
DeclareOperation( "Restricted", [ IsObject, IsObject ] );
DeclareOperation( "Restricted", [ IsObject, IsObject, IsObject ] );
DeclareOperation( "Restricted", [ IsObject, IsObject, IsObject, IsObject ] );
DeclareSynonym( "Inflated", Restricted );


#############################################################################
##
#O  InducedClassFunction( [<tbl>, ]<chi>, <H> )
#O  InducedClassFunction( [<tbl>, ]<chi>, <hom> )
#O  InducedClassFunction( [<tbl>, ]<chi>, <suptbl> )
##
##  <#GAPDoc Label="InducedClassFunction">
##  <ManSection>
##  <Heading>InducedClassFunction</Heading>
##  <Oper Name="InducedClassFunction" Arg='[tbl, ]chi, H'
##   Label="for a supergroup"/>
##  <Oper Name="InducedClassFunction" Arg='[tbl, ]chi, hom'
##   Label="for a given monomorphism"/>
##  <Oper Name="InducedClassFunction" Arg='[tbl, ]chi, suptbl'
##   Label="for the character table of a supergroup"/>
##
##  <Description>
##  Let <A>chi</A> be a class function of the group <M>G</M>, say,
##  and let <A>target</A> be either a supergroup <M>H</M> of <M>G</M>
##  or an injective homomorphism from <M>H</M> to <M>G</M>
##  or the character table of <A>H</A>.
##  Then <Ref Oper="InducedClassFunction" Label="for a supergroup"/>
##  returns the class function of <M>H</M> obtained by inducing <A>chi</A>
##  to <M>H</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InducedClassFunction", [ IsClassFunction, IsGroup ] );
DeclareOperation( "InducedClassFunction",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsGroup ] );
DeclareOperation( "InducedClassFunction",
    [ IsClassFunction, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunction",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunction",
    [ IsClassFunction, IsNearlyCharacterTable ] );
DeclareOperation( "InducedClassFunction",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsNearlyCharacterTable ] );


#############################################################################
##
#O  InducedClassFunctions( [<tbl>, ]<chars>, <H> )
#O  InducedClassFunctions( [<tbl>, ]<chars>, <hom> )
#O  InducedClassFunctions( [<tbl>, ]<chars>, <suptbl> )
##
##  <#GAPDoc Label="InducedClassFunctions">
##  <ManSection>
##  <Oper Name="InducedClassFunctions" Arg='[tbl, ]chars, target'/>
##
##  <Description>
##  <Ref Oper="InducedClassFunctions"/> is similar to
##  <Ref Oper="InducedClassFunction" Label="for a supergroup"/>,
##  the only difference is that it takes a list <A>chars</A> of class
##  functions instead of one class function,
##  and returns the list of induced class functions.
##  <P/>
##  <Example><![CDATA[
##  gap> InducedClassFunctions( Irr( a5 ), s5 );
##  [ Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 8, 0, 2, -2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 10, 2, -2, 0, 0, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InducedClassFunctions", [ IsList, IsGroup ] );
DeclareOperation( "InducedClassFunctions",
    [ IsNearlyCharacterTable, IsList, IsGroup ] );
DeclareOperation( "InducedClassFunctions",
    [ IsList, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunctions",
    [ IsNearlyCharacterTable, IsList, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunctions",
    [ IsList, IsNearlyCharacterTable ] );
DeclareOperation( "InducedClassFunctions",
    [ IsNearlyCharacterTable, IsList, IsNearlyCharacterTable ] );


#############################################################################
##
#F  InducedClassFunctionsByFusionMap( <subtbl>, <tbl>, <chars>, <fusionmap> )
##
##  <#GAPDoc Label="InducedClassFunctionsByFusionMap">
##  <ManSection>
##  <Func Name="InducedClassFunctionsByFusionMap"
##   Arg='subtbl, tbl, chars, fusionmap'/>
##
##  <Description>
##  Let <A>subtbl</A> and <A>tbl</A> be two character tables of groups
##  <M>H</M> and <M>G</M>, such that <M>H</M> is a subgroup of <M>G</M>,
##  let <A>chars</A> be a list of class functions of <A>subtbl</A>, and
##  let <A>fusionmap</A> be a fusion map from <A>subtbl</A> to <A>tbl</A>.
##  The function returns the list of induced class functions of <A>tbl</A>
##  that correspond to <A>chars</A>, w.r.t. the given fusion map.
##  <P/>
##  <Ref Func="InducedClassFunctionsByFusionMap"/> is the function that does
##  the work for <Ref Oper="InducedClassFunction"
##  Label="for the character table of a supergroup"/> and
##  <Ref Oper="InducedClassFunctions"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> fus:= PossibleClassFusions( a5, s5 );
##  [ [ 1, 2, 3, 4, 4 ] ]
##  gap> InducedClassFunctionsByFusionMap( a5, s5, Irr( a5 ), fus[1] );
##  [ Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 8, 0, 2, -2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 10, 2, -2, 0, 0, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "InducedClassFunctionsByFusionMap" );


#############################################################################
##
#O  Induced( <subtbl>, <tbl>, <chars> )
#O  Induced( <subtbl>, <tbl>, <chars>, <specification> )
#O  Induced( <subtbl>, <tbl>, <chars>, <fusionmap> )
#O  Induced( [<tbl>, ]<chi>, <H> )
#O  Induced( [<tbl>, ]<chi>, <hom> )
#O  Induced( [<tbl>, ]<chi>, <suptbl> )
#O  Induced( [<tbl>, ]<chars>, <H> )
#O  Induced( [<tbl>, ]<chars>, <hom> )
#O  Induced( [<tbl>, ]<chars>, <suptbl> )
##
##  <ManSection>
##  <Oper Name="Induced" Arg='subtbl, tbl, chars'/>
##  <Oper Name="Induced" Arg='subtbl, tbl, chars, specification'/>
##  <Oper Name="Induced" Arg='subtbl, tbl, chars, fusionmap'/>
##  <Oper Name="Induced" Arg='[tbl, ]chi, H'/>
##  <Oper Name="Induced" Arg='[tbl, ]chi, hom'/>
##  <Oper Name="Induced" Arg='[tbl, ]chi, suptbl'/>
##  <Oper Name="Induced" Arg='[tbl, ]chars, H'/>
##  <Oper Name="Induced" Arg='[tbl, ]chars, hom'/>
##  <Oper Name="Induced" Arg='[tbl, ]chars, suptbl'/>
##
##  <Description>
##  This is mainly for convenience and compatibility with &GAP;&nbsp;3.
##  </Description>
##  </ManSection>
##
DeclareOperation( "Induced", [ IsObject, IsObject ] );
DeclareOperation( "Induced", [ IsObject, IsObject, IsObject ] );
DeclareOperation( "Induced", [ IsObject, IsObject, IsObject, IsObject ] );


#############################################################################
##
#O  InducedCyclic( <tbl>[, <classes>][, "all"] )
##
##  <#GAPDoc Label="InducedCyclic">
##  <ManSection>
##  <Oper Name="InducedCyclic" Arg='tbl[, classes][, "all"]'/>
##
##  <Description>
##  <Ref Oper="InducedCyclic"/> calculates characters induced up from
##  cyclic subgroups of the ordinary character table <A>tbl</A>
##  to <A>tbl</A>, and returns the strictly sorted list of the induced
##  characters.
##  <P/>
##  If the string <C>"all"</C> is specified then all irreducible characters
##  of these subgroups are induced,
##  otherwise only the permutation characters are calculated.
##  <P/>
##  If a list <A>classes</A> is specified then only those cyclic subgroups
##  generated by these classes are considered,
##  otherwise all classes of <A>tbl</A> are considered.
##  <P/>
##  <Example><![CDATA[
##  gap> InducedCyclic( a5, "all" );
##  [ Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 12, 0, 0, E(5)^2+E(5)^3, E(5)+E(5)^4 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 12, 0, 0, E(5)+E(5)^4, E(5)^2+E(5)^3 ] ), 
##    Character( CharacterTable( "A5" ), [ 20, 0, -1, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 30, -2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InducedCyclic", [ IsOrdinaryTable ] );
DeclareOperation( "InducedCyclic", [ IsOrdinaryTable, IsList ] );
DeclareOperation( "InducedCyclic", [ IsOrdinaryTable, IsList, IsString ] );


#############################################################################
##
##  10. Reducing Virtual Characters
##
##  <#GAPDoc Label="[8]{ctblfuns}">
##  The following operations are intended for the situation that one is
##  given a list of virtual characters of a character table and is interested
##  in the irreducible characters of this table.
##  The idea is to compute virtual characters of small norm from the given
##  ones, hoping to get eventually virtual characters of norm <M>1</M>.
##  <#/GAPDoc>
##


#############################################################################
##
#O  ReducedClassFunctions( [<tbl>, ][<constituents>, ]<reducibles> )
##
##  <#GAPDoc Label="ReducedClassFunctions">
##  <ManSection>
##  <Oper Name="ReducedClassFunctions"
##   Arg='[tbl, ][constituents, ]reducibles'/>
##
##  <Description>
##  Let <A>reducibles</A> be a list of ordinary virtual characters
##  of the group <M>G</M>, say.
##  If <A>constituents</A> is given then it must also be a list of ordinary
##  virtual characters of <M>G</M>,
##  otherwise we have <A>constituents</A> equal to <A>reducibles</A>
##  in the following.
##  <P/>
##  <Ref Oper="ReducedClassFunctions"/> returns a record with the components
##  <C>remainders</C> and <C>irreducibles</C>,
##  both lists of virtual characters of <M>G</M>.
##  These virtual characters are computed as follows.
##  <P/>
##  Let <C>rems</C> be the set of nonzero class functions obtained by
##  subtraction of
##  <Display Mode="M">
##  \sum_{\chi} ( [<A>reducibles</A>[i], \chi] / [\chi, \chi] ) \cdot \chi
##  </Display>
##  from <M><A>reducibles</A>[i]</M>,
##  where the summation runs over <A>constituents</A>
##  and <M>[\chi, \psi]</M> denotes the scalar product of <M>G</M>-class
##  functions.
##  Let <C>irrs</C> be the list of irreducible characters in <C>rems</C>.
##  <P/>
##  We project <C>rems</C> into the orthogonal space of <C>irrs</C> and
##  all those irreducibles found this way until no new irreducibles arise.
##  Then the <C>irreducibles</C> list is the set of all found irreducible
##  characters, and the <C>remainders</C> list is the set of all nonzero
##  remainders.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ReducedClassFunctions",
    [ IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "ReducedClassFunctions",
    [ IsOrdinaryTable, IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "ReducedClassFunctions",
    [ IsHomogeneousList ] );
DeclareOperation( "ReducedClassFunctions",
    [ IsOrdinaryTable, IsHomogeneousList ] );

DeclareSynonym( "Reduced", ReducedClassFunctions );


#############################################################################
##
#O  ReducedCharacters( [<tbl>, ]<constituents>, <reducibles> )
##
##  <#GAPDoc Label="ReducedCharacters">
##  <ManSection>
##  <Oper Name="ReducedCharacters" Arg='[tbl, ]constituents, reducibles'/>
##
##  <Description>
##  <Ref Oper="ReducedCharacters"/> is similar to
##  <Ref Oper="ReducedClassFunctions"/>,
##  the only difference is that <A>constituents</A> and <A>reducibles</A>
##  are assumed to be lists of characters.
##  This means that only those scalar products must be formed where the
##  degree of the character in <A>constituents</A> does not exceed the degree
##  of the character in <A>reducibles</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "A5" );;
##  gap> chars:= Irr( tbl ){ [ 2 .. 4 ] };;
##  gap> chars:= Set( Tensored( chars, chars ) );;
##  gap> red:= ReducedClassFunctions( chars );
##  rec( 
##    irreducibles := 
##      [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##        Character( CharacterTable( "A5" ), 
##          [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ), 
##        Character( CharacterTable( "A5" ), 
##          [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ), 
##        Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ), 
##        Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ], 
##    remainders := [  ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ReducedCharacters",
    [ IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "ReducedCharacters",
    [ IsOrdinaryTable, IsHomogeneousList, IsHomogeneousList ] );

DeclareSynonym( "ReducedOrdinary", ReducedCharacters );


#############################################################################
##
#F  IrreducibleDifferences( <tbl>, <reducibles>, <reducibles2>[, <scprmat>] )
#F  IrreducibleDifferences( <tbl>, <reducibles>, "triangle"[, <scprmat>] )
##
##  <#GAPDoc Label="IrreducibleDifferences">
##  <ManSection>
##  <Func Name="IrreducibleDifferences"
##   Arg='tbl, reducibles, reducibles2[, scprmat]'/>
##
##  <Description>
##  <Ref Func="IrreducibleDifferences"/> returns the list of irreducible
##  characters which occur as difference of an element of <A>reducibles</A>
##  and an element of <A>reducibles2</A>,
##  where these two arguments are lists of class functions of the character
##  table <A>tbl</A>.
##  <P/>
##  If <A>reducibles2</A> is the string <C>"triangle"</C> then the
##  differences of elements in <A>reducibles</A> are considered.
##  <P/>
##  If <A>scprmat</A> is not specified then it will be calculated,
##  otherwise we must have
##  <C><A>scprmat</A> =
##  MatScalarProducts( <A>tbl</A>, <A>reducibles</A>, <A>reducibles2</A> )</C>
##  or <C><A>scprmat</A> =
##  MatScalarProducts( <A>tbl</A>, <A>reducibles</A> )</C>,
##  respectively.
##  <P/>
##  <Example><![CDATA[
##  gap> IrreducibleDifferences( a5, chars, "triangle" );
##  [ Character( CharacterTable( "A5" ), 
##      [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IrreducibleDifferences" );


#############################################################################
##
##  11. Symmetrizations of Class Functions
##


#############################################################################
##
#O  Symmetrizations( [<tbl>, ]<characters>, <n> )
##
##  <#GAPDoc Label="Symmetrizations">
##  <ManSection>
##  <Oper Name="Symmetrizations" Arg='[tbl, ]characters, n'/>
##
##  <Description>
##  <Index Subkey="symmetrizations of">characters</Index>
##  <Ref Oper="Symmetrizations"/> returns the list of symmetrizations
##  of the characters <A>characters</A> of the ordinary character table
##  <A>tbl</A> with the ordinary irreducible characters of the symmetric
##  group of degree <A>n</A>;
##  instead of the integer <A>n</A>,
##  the character table of the symmetric group can be entered.
##  <P/>
##  The symmetrization <M>\chi^{[\lambda]}</M> of the character <M>\chi</M>
##  of <A>tbl</A> with the character <M>\lambda</M> of the symmetric group
##  <M>S_n</M> of degree <M>n</M> is defined by
##  <Display Mode="M">
##  \chi^{[\lambda]}(g) = \left( \sum_{{\rho \in S_n}}
##      \lambda(\rho) \prod_{{k=1}}^n \chi(g^k)^{{a_k(\rho)}} \right) / n! ,
##  </Display>
##  where <M>a_k(\rho)</M> is the number of cycles of length <M>k</M>
##  in <M>\rho</M>.
##  <P/>
##  For special kinds of symmetrizations,
##  see&nbsp;<Ref Func="SymmetricParts"/>, <Ref Func="AntiSymmetricParts"/>,
##  <Ref Func="MinusCharacter"/> and <Ref Func="OrthogonalComponents"/>,
##  <Ref Func="SymplecticComponents"/>.
##  <P/>
##  <E>Note</E> that the returned list may contain zero class functions,
##  and duplicates are not deleted.
##  <!-- describe the succession!!-->
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "A5" );;
##  gap> Symmetrizations( Irr( tbl ){ [ 1 .. 3 ] }, 3 );
##  [ VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ), 
##    VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 8, 0, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ), 
##    Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), 
##      [ 8, 0, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ), 
##    Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Symmetrizations",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsInt ] );
DeclareOperation( "Symmetrizations",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsCharacterTable ] );
DeclareOperation( "Symmetrizations", [ IsHomogeneousList, IsInt ] );
DeclareOperation( "Symmetrizations",
    [ IsHomogeneousList, IsCharacterTable ] );

DeclareSynonym( "Symmetrisations", Symmetrizations );


#############################################################################
##
#F  SymmetricParts( <tbl>, <characters>, <n> )
##
##  <#GAPDoc Label="SymmetricParts">
##  <ManSection>
##  <Func Name="SymmetricParts" Arg='tbl, characters, n'/>
##
##  <Description>
##  <Index>symmetric power</Index>
##  is the list of symmetrizations of the characters <A>characters</A>
##  of the character table <A>tbl</A> with the trivial character of
##  the symmetric group of degree <A>n</A>
##  (see&nbsp;<Ref Oper="Symmetrizations"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> SymmetricParts( tbl, Irr( tbl ), 3 );
##  [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 35, 3, 2, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SymmetricParts" );


#############################################################################
##
#F  AntiSymmetricParts( <tbl>, <characters>, <n> )
##
##  <#GAPDoc Label="AntiSymmetricParts">
##  <ManSection>
##  <Func Name="AntiSymmetricParts" Arg='tbl, characters, n'/>
##
##  <Description>
##  <Index>exterior power</Index>
##  is the list of symmetrizations of the characters <A>characters</A>
##  of the character table <A>tbl</A> with the alternating character of
##  the symmetric group of degree <A>n</A>
##  (see&nbsp;<Ref Oper="Symmetrizations"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> AntiSymmetricParts( tbl, Irr( tbl ), 3 );
##  [ VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ), 
##    Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AntiSymmetricParts" );


#############################################################################
##
#F  RefinedSymmetrizations( <tbl>, <chars>, <m>, <func> )
##
##  <ManSection>
##  <Func Name="RefinedSymmetrizations" Arg='tbl, chars, m, func'/>
##
##  <Description>
##  is the list of Murnaghan components for orthogonal
##  ('<A>func</A>(x,y)=x', see&nbsp;<Ref Func="OrthogonalComponents"/>)
##  or symplectic
##  ('<A>func</A>(x,y)=x-y', see&nbsp;<Ref Func="SymplecticComponents"/>)
##  symmetrizations.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "RefinedSymmetrizations" );
DeclareSynonym( "RefinedSymmetrisations", RefinedSymmetrizations );


#############################################################################
##
#F  OrthogonalComponents( <tbl>, <chars>, <m> )
##
##  <#GAPDoc Label="OrthogonalComponents">
##  <ManSection>
##  <Func Name="OrthogonalComponents" Arg='tbl, chars, m'/>
##
##  <Description>
##  <Index Subkey="orthogonal">symmetrizations</Index>
##  <Index>Frame</Index>
##  <Index>Murnaghan components</Index>
##  If <M>\chi</M> is a nonlinear character with indicator <M>+1</M>,
##  a splitting of the tensor power <M>\chi^m</M> is given by the so-called
##  Murnaghan functions (see&nbsp;<Cite Key="Mur58"/>).
##  These components in general have fewer irreducible constituents
##  than the symmetrizations with the symmetric group of degree <A>m</A>
##  (see&nbsp;<Ref Oper="Symmetrizations"/>).
##  <P/>
##  <Ref Func="OrthogonalComponents"/> returns the Murnaghan components
##  of the nonlinear characters of the character table <A>tbl</A>
##  in the list <A>chars</A> up to the power <A>m</A>,
##  where <A>m</A> is an integer between 2 and 6.
##  <P/>
##  The Murnaghan functions are implemented as in&nbsp;<Cite Key="Fra82"/>.
##  <P/>
##  <E>Note</E>:
##  If <A>chars</A> is a list of character objects
##  (see&nbsp;<Ref Func="IsCharacter"/>) then also
##  the result consists of class function objects.
##  It is not checked whether all characters in <A>chars</A> do really have
##  indicator <M>+1</M>;
##  if there are characters with indicator <M>0</M> or <M>-1</M>,
##  the result might contain virtual characters
##  (see also&nbsp;<Ref Func="SymplecticComponents"/>),
##  therefore the entries of the result do in general not know that they are
##  characters.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "A8" );;  chi:= Irr( tbl )[2];
##  Character( CharacterTable( "A8" ), [ 7, -1, 3, 4, 1, -1, 1, 2, 0, -1, 
##    0, 0, -1, -1 ] )
##  gap> OrthogonalComponents( tbl, [ chi ], 3 );
##  [ ClassFunction( CharacterTable( "A8" ), 
##      [ 21, -3, 1, 6, 0, 1, -1, 1, -2, 0, 0, 0, 1, 1 ] ), 
##    ClassFunction( CharacterTable( "A8" ), 
##      [ 27, 3, 7, 9, 0, -1, 1, 2, 1, 0, -1, -1, -1, -1 ] ), 
##    ClassFunction( CharacterTable( "A8" ), 
##      [ 105, 1, 5, 15, -3, 1, -1, 0, -1, 1, 0, 0, 0, 0 ] ), 
##    ClassFunction( CharacterTable( "A8" ), 
##      [ 35, 3, -5, 5, 2, -1, -1, 0, 1, 0, 0, 0, 0, 0 ] ), 
##    ClassFunction( CharacterTable( "A8" ), 
##      [ 77, -3, 13, 17, 2, 1, 1, 2, 1, 0, 0, 0, 2, 2 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OrthogonalComponents" );


#############################################################################
##
#F  SymplecticComponents( <tbl>, <chars>, <m> )
##
##  <#GAPDoc Label="SymplecticComponents">
##  <ManSection>
##  <Func Name="SymplecticComponents" Arg='tbl, chars, m'/>
##
##  <Description>
##  <Index Subkey="symplectic">symmetrizations</Index>
##  <Index>Murnaghan components</Index>
##  If <M>\chi</M> is a (nonlinear) character with indicator <M>-1</M>,
##  a splitting of the tensor power <M>\chi^m</M> is given in terms of the
##  so-called Murnaghan functions (see&nbsp;<Cite Key="Mur58"/>).
##  These components in general have fewer irreducible constituents
##  than the symmetrizations with the symmetric group of degree <A>m</A>
##  (see&nbsp;<Ref Oper="Symmetrizations"/>).
##  <P/>
##  <Ref Func="SymplecticComponents"/> returns the symplectic symmetrizations
##  of the nonlinear characters of the character table <A>tbl</A>
##  in the list <A>chars</A> up to the power <A>m</A>,
##  where <A>m</A> is an integer between <M>2</M> and <M>5</M>.
##  <P/>
##  <E>Note</E>:
##  If <A>chars</A> is a list of character objects
##  (see&nbsp;<Ref Func="IsCharacter"/>) then also
##  the result consists of class function objects.
##  It is not checked whether all characters in <A>chars</A> do really have
##  indicator <M>-1</M>;
##  if there are characters with indicator <M>0</M> or <M>+1</M>,
##  the result might contain virtual characters
##  (see also&nbsp;<Ref Func="OrthogonalComponents"/>),
##  therefore the entries of the result do in general not know that they are
##  characters.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "U3(3)" );;  chi:= Irr( tbl )[2];
##  Character( CharacterTable( "U3(3)" ), 
##  [ 6, -2, -3, 0, -2, -2, 2, 1, -1, -1, 0, 0, 1, 1 ] )
##  gap> SymplecticComponents( tbl, [ chi ], 3 );
##  [ ClassFunction( CharacterTable( "U3(3)" ), 
##      [ 14, -2, 5, -1, 2, 2, 2, 1, 0, 0, 0, 0, -1, -1 ] ), 
##    ClassFunction( CharacterTable( "U3(3)" ), 
##      [ 21, 5, 3, 0, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1 ] ), 
##    ClassFunction( CharacterTable( "U3(3)" ), 
##      [ 64, 0, -8, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 ] ), 
##    ClassFunction( CharacterTable( "U3(3)" ), 
##      [ 14, 6, -4, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2 ] ), 
##    ClassFunction( CharacterTable( "U3(3)" ), 
##      [ 56, -8, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SymplecticComponents" );


#############################################################################
##
##  12. Operations for Brauer Characters
##


#############################################################################
##
#F  FrobeniusCharacterValue( <value>, <p> )
##
##  <#GAPDoc Label="FrobeniusCharacterValue">
##  <ManSection>
##  <Func Name="FrobeniusCharacterValue" Arg='value, p'/>
##
##  <Description>
##  Let <A>value</A> be a cyclotomic whose coefficients over the rationals
##  are in the ring <M>&ZZ;_{<A>p</A>}</M> of <A>p</A>-local numbers,
##  where <A>p</A> is a prime integer.
##  Assume that <A>value</A> lies in <M>&ZZ;_{<A>p</A>}[\zeta]</M>
##  for <M>\zeta = \exp(<A>p</A>^n-1)</M>,
##  for some positive integer <M>n</M>.
##  <P/>
##  <Ref Func="FrobeniusCharacterValue"/> returns the image of <A>value</A>
##  under the ring homomorphism from <M>&ZZ;_{<A>p</A>}[\zeta]</M>
##  to the field with <M><A>p</A>^n</M> elements
##  that is defined with the help of Conway polynomials
##  (see&nbsp;<Ref Func="ConwayPolynomial"/>), more information can be found
##  in <Cite Key="JLPW95" Where="Sections 2-5"/>.
##  <P/>
##  If <A>value</A> is a Brauer character value in characteristic <A>p</A>
##  then the result can be described as the corresponding value of the
##  Frobenius character, that is, as the trace of a representing matrix
##  with the given Brauer character value.
##  <P/>
##  If the result of <Ref Func="FrobeniusCharacterValue"/> cannot be
##  expressed as an element of a finite field in &GAP;
##  (see Chapter&nbsp;<Ref Chap="Finite Fields"/>)
##  then <Ref Func="FrobeniusCharacterValue"/> returns <K>fail</K>.
##  <P/>
##  If the Conway polynomial of degree <M>n</M> is required for the
##  computation then it is computed only if
##  <Ref Func="IsCheapConwayPolynomial"/> returns <K>true</K> when it is
##  called with <A>p</A> and <M>n</M>,
##  otherwise <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FrobeniusCharacterValue" );


##############################################################################
##
#F  ReductionToFiniteField( <value>, <p> )
##
##  If this function shall become documented, this can be done in the manual
##  section for FrobeniusCharacterValue.
##
##  <Func Name="ReductionToFiniteField" Arg='value, p'/>
##
##  <Description>
##  Let <A>value</A> be a cyclotomic whose coefficients over the rationals
##  are in the ring <M>&ZZ;_{<A>p</A>}</M> of <A>p</A>-local numbers,
##  where <A>p</A> is a prime integer.
##  <Ref Func="ReductionToFiniteField"/> returns a pair <C>[ pol, m ]</C>
##  where <C>pol</C> is a polynomial over the field with <A>p</A> elements
##  and <C>m</C> is an integer such that the field with <A>p</A><C>^m</C>
##  elements is the minimal field that contains the reduction under the ring
##  homomorphism defined above.
##  The reduction of <A>value</A> is represented by <C>pol</C> modulo
##  the ideal spanned by the Conway polynomial
##  (see <Ref Func="ConwayPolynomial"/>) of degree <C>m</C>.
##  <P/>
##  <K>fail</K> is returned if ...
##  </Description>
##
DeclareGlobalFunction( "ReductionToFiniteField" );


#############################################################################
##
#A  BrauerCharacterValue( <mat> )
##
##  <#GAPDoc Label="BrauerCharacterValue">
##  <ManSection>
##  <Attr Name="BrauerCharacterValue" Arg='mat'/>
##
##  <Description>
##  For an invertible matrix <A>mat</A> over a finite field <M>F</M>,
##  <Ref Attr="BrauerCharacterValue"/> returns the Brauer character value
##  of <A>mat</A> if the order of <A>mat</A> is coprime to the characteristic
##  of <M>F</M>, and <K>fail</K> otherwise.
##  <P/>
##  The <E>Brauer character value</E> of a matrix is the sum of complex lifts
##  of its eigenvalues.
##  <P/>
##  <Example><![CDATA[
##  gap> g:= SL(2,4);;           # 2-dim. irreducible representation of A5
##  gap> ccl:= ConjugacyClasses( g );;
##  gap> rep:= List( ccl, Representative );;
##  gap> List( rep, Order );
##  [ 1, 2, 5, 5, 3 ]
##  gap> phi:= List( rep, BrauerCharacterValue );
##  [ 2, fail, E(5)^2+E(5)^3, E(5)+E(5)^4, -1 ]
##  gap> List( phi{ [ 1, 3, 4, 5 ] }, x -> FrobeniusCharacterValue( x, 2 ) );
##  [ 0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0 ]
##  gap> List( rep{ [ 1, 3, 4, 5 ] }, TraceMat );
##  [ 0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BrauerCharacterValue", IsMatrix );


#############################################################################
##
#V  ZEV_DATA
#F  ZevData( <q>, <n>[, <listofpairs>] )
#F  ZevDataValue( <q>, <n> )
##
##  <ManSection>
##  <Var Name="ZEV_DATA"/>
##  <Func Name="ZevData" Arg='q, n[, listofpairs]'/>
##  <Func Name="ZevDataValue" Arg='q, n'/>
##
##  <Description>
##  These variables are used for a database that speeds up the computation of
##  Brauer character values.
##  <P/>
##  <C>ZEV_DATA</C> is a list of length <M>2</M>, at position <M>1</M> storing a list of
##  prime powers <M>q</M>, and at position <M>2</M> a corresponding list of lists <M>l</M>.
##  For given <M>q</M>, the list <M>l</M> is again a list of length <M>2</M>,
##  at position <M>1</M> storing a list of positive integers <M>n</M>, at position <M>2</M>
##  a corresponding list of lists, the entry for fixed (<M>q</M> and) <M>n</M> being
##  a list of pairs <M>[ c, y ]</M> as needed by <C>ZevData</C>.
##  <P/>
##  For a prime power <A>q</A> and a positive integer <A>n</A>, <C>ZevData</C> returns
##  a list of pairs <M>[ c, y ]</M> where <M>c</M> is the coefficient list of a
##  polynomial <M>f</M> over the field <M>F</M> with <A>q</A> elements,
##  and <M>y</M> a complex value.
##  These pairs are used to compute Brauer character values of matrices <M>M</M>
##  over <M>F</M>, of order <A>n</A>;
##  a <M>d</M>-dimensional nullspace of the matrix obtained by evaluating <M>f</M> at
##  <M>M</M> contributes the summand <M>y</M> with multiplicity <M>d / <C>Degree</C>( f )</M>.
##  <P/>
##  <C>ZevData</C> checks whether the required data are already stored in the
##  global list <C>ZEV_DATA</C>;
##  if not then <C>ZevDataValue</C> is called, which does the real work.
##  <P/>
##  Called with three arguments, <C>ZevData</C> <E>stores</E> the third argument in the
##  global list <C>ZEV_DATA</C>, at the position where the call with the first two
##  arguments will fetch it.
##  <P/>
##  (The names of these functions reflect that the corresponding command in
##  the C-&MeatAxe; is <C>zev</C>.)
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "ZEV_DATA", "nested list of length 2" );
DeclareGlobalFunction( "ZevData" );
DeclareGlobalFunction( "ZevDataValue" );


#############################################################################
##
#F  SizeOfFieldOfDefinition( <val>, <p> )
##
##  <#GAPDoc Label="SizeOfFieldOfDefinition">
##  <ManSection>
##  <Func Name="SizeOfFieldOfDefinition" Arg='val, p'/>
##
##  <Description>
##  For a cyclotomic or a list of cyclotomics <A>val</A>,
##  and a prime integer <A>p</A>, <Ref Func="SizeOfFieldOfDefinition"/>
##  returns the size of the smallest finite field
##  in characteristic <A>p</A> that contains the <A>p</A>-modular reduction
##  of <A>val</A>.
##  <P/>
##  The reduction map is defined as in&nbsp;<Cite Key="JLPW95"/>,
##  that is, the complex <M>(<A>p</A>^d-1)</M>-th root of unity
##  <M>\exp(<A>p</A>^d-1)</M> is mapped to the residue class of the
##  indeterminate, modulo the ideal spanned by the Conway polynomial
##  (see&nbsp;<Ref Func="ConwayPolynomial"/>) of degree <M>d</M> over the
##  field with <M>p</M> elements.
##  <P/>
##  If <A>val</A> is a Brauer character then the value returned is the size
##  of the smallest finite field in characteristic <A>p</A> over which the
##  corresponding representation lives.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SizeOfFieldOfDefinition" );


#############################################################################
##
#F  RealizableBrauerCharacters( <matrix>, <q> )
##
##  <#GAPDoc Label="RealizableBrauerCharacters">
##  <ManSection>
##  <Func Name="RealizableBrauerCharacters" Arg='matrix, q'/>
##
##  <Description>
##  For a list <A>matrix</A> of absolutely irreducible Brauer characters
##  in characteristic <M>p</M>, and a power <A>q</A> of <M>p</M>,
##  <Ref Func="RealizableBrauerCharacters"/> returns a duplicate-free list of
##  sums of Frobenius conjugates of the rows of <A>matrix</A>,
##  each irreducible over the field with <A>q</A> elements.
##  <P/>
##  <Example><![CDATA[
##  gap> irr:= Irr( CharacterTable( "A5" ) mod 2 );
##  [ Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] ), 
##    Character( BrauerTable( "A5", 2 ), 
##      [ 2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3 ] ), 
##    Character( BrauerTable( "A5", 2 ), 
##      [ 2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4 ] ), 
##    Character( BrauerTable( "A5", 2 ), [ 4, 1, -1, -1 ] ) ]
##  gap> List( irr, phi -> SizeOfFieldOfDefinition( phi, 2 ) );
##  [ 2, 4, 4, 2 ]
##  gap> RealizableBrauerCharacters( irr, 2 );
##  [ Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] ), 
##    ClassFunction( BrauerTable( "A5", 2 ), [ 4, -2, -1, -1 ] ), 
##    Character( BrauerTable( "A5", 2 ), [ 4, 1, -1, -1 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RealizableBrauerCharacters" );


#############################################################################
##
##  13. Domains Generated by Class Functions
##
##  <#GAPDoc Label="[9]{ctblfuns}">
##  &GAP; supports groups, vector spaces, and algebras generated by class
##  functions.
##  <!-- add examples:
##  gap> d8:= DihedralGroup( 8 );
##  <pc group of size 8 with 3 generators>
##  gap> lin:= LinearCharacters( d8 );;
##  gap> irr:= Irr( d8 );;
##  gap> g:= Group( lin, lin[1] );
##  <group with 4 generators>
##  gap> Size( g );
##  4
##  gap> IdGroup( g );
##  [ 4, 2 ]
##  gap> v:= VectorSpace( Rationals, lin );;
##  gap> w:= VectorSpace( Rationals, irr );;
##  gap> Dimension( v );
##  4
##  gap> Dimension( w );
##  5
##  
##  Note that for generating a group of class functions,
##  one should use the two-argument version of
##  <Ref Func="Group" Label="for a list of generators (and an identity element)"/>,
##  because a call of the one-argument version will return the cyclic matrix
##  group generated by the matrix of the intended generating class functions
##  if this matrix is invertible.
##  % Otherwise it seems to work, but why?
##  
##  gap> g:= CyclicGroup( 4 );;
##  gap> irr:= Irr( g );;
##  gap> Size( Group( irr ) );
##  infinity
##  gap> Size( Group( irr, TrivialCharacter( g ) ) );
##  4
##  -->
##  <#/GAPDoc>
##


#############################################################################
##
#F  IsClassFunctionsSpace( <V> )
##
##  <ManSection>
##  <Func Name="IsClassFunctionsSpace" Arg='V'/>
##
##  <Description>
##  If an <M>F</M>-vector space <A>V</A> is in the filter
##  <Ref Func="IsClassFunctionsSpace"/> then this expresses that <A>V</A>
##  consists of class functions, and that <A>V</A> is
##  handled via the mechanism of nice bases (see&nbsp;<Ref ???="..."/>),
##  in the following way.
##  Let <M>T</M> be the underlying character table of the elements of <A>V</A>.
##  Then the <C>NiceFreeLeftModuleInfo</C> value of <A>V</A> is <M>T</M>,
##  and the <C>NiceVector</C> value of <M>v \in <A>V</A></M> is defined as
##  <C>ValueOfClassFunction</C><M>( v )</M>.
##  </Description>
##  </ManSection>
##
DeclareHandlingByNiceBasis( "IsClassFunctionsSpace",
    "for free left modules of class functions" );


#############################################################################
##
##  14. Auxiliary operations
##


##############################################################################
##
#F  OrbitChar( <chi>, <linear> )
##
##  <ManSection>
##  <Func Name="OrbitChar" Arg='chi, linear'/>
##
##  <Description>
##  is the orbit of the character values list <A>chi</A> under the action of
##  Galois automorphisms and multiplication with the linear characters in
##  the list <A>linear</A>.
##  <P/>
##  It is assumed that <A>linear</A> is closed under Galois automorphisms and
##  tensoring.
##  (This means that we can first form the orbit under Galois action, and
##  then apply the linear characters to all Galois conjugates.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OrbitChar" );


##############################################################################
##
#F  OrbitsCharacters( <chars> )
##
##  <ManSection>
##  <Func Name="OrbitsCharacters" Arg='chars'/>
##
##  <Description>
##  is a list of orbits of the characters in the list <A>chars</A>
##  under the action of Galois automorphisms
##  and multiplication with the linear characters in <A>chars</A>.
##  <P/>
##  (Note that the image of an ordinary character under a Galois automorphism
##  is always a character; this is in general not true for Brauer characters.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OrbitsCharacters" );


##############################################################################
##
#F  OrbitRepresentativesCharacters( <irr> )
##
##  <ManSection>
##  <Func Name="OrbitRepresentativesCharacters" Arg='irr'/>
##
##  <Description>
##  is a list of representatives of the orbits of the characters <A>irr</A>
##  under the action of Galois automorphisms and multiplication with linear
##  characters.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OrbitRepresentativesCharacters" );


#T where to put the following two functions?
#############################################################################
##
#F  CollapsedMat( <mat>, <maps> )
##
##  <#GAPDoc Label="CollapsedMat">
##  <ManSection>
##  <Func Name="CollapsedMat" Arg='mat, maps'/>
##
##  <Description>
##  is a record with the components
##  <P/>
##  <List>
##  <Mark><C>fusion</C></Mark>
##  <Item>
##     fusion that collapses those columns of <A>mat</A> that are equal in
##     <A>mat</A> and also for all maps in the list <A>maps</A>,
##  </Item>
##  <Mark><C>mat</C></Mark>
##  <Item>
##     the image of <A>mat</A> under that fusion.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> mat:= [ [ 1, 1, 1, 1 ], [ 2, -1, 0, 0 ], [ 4, 4, 1, 1 ] ];;
##  gap> coll:= CollapsedMat( mat, [] );
##  rec( fusion := [ 1, 2, 3, 3 ], 
##    mat := [ [ 1, 1, 1 ], [ 2, -1, 0 ], [ 4, 4, 1 ] ] )
##  gap> List( last.mat, x -> x{ last.fusion } ) = mat;
##  true
##  gap> coll:= CollapsedMat( mat, [ [ 1, 1, 1, 2 ] ] );
##  rec( fusion := [ 1, 2, 3, 4 ], 
##    mat := [ [ 1, 1, 1, 1 ], [ 2, -1, 0, 0 ], [ 4, 4, 1, 1 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CollapsedMat" );


#############################################################################
##
#F  CharacterTableQuaternionic( <4n> )
##
##  <ManSection>
##  <Func Name="CharacterTableQuaternionic" Arg='4n'/>
##
##  <Description>
##  is the ordinary character table of the generalized quaternion group
##  of order <A>4n</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CharacterTableQuaternionic" );


#############################################################################
##
#E