/usr/share/gap/doc/ref/chap51.html is in gap-doc 4r7p5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 | <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 51: Semigroups and Monoids</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap51" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap50.html">[Previous Chapter]</a> <a href="chap52.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap51_mj.html">[MathJax on]</a></p>
<p><a id="X8665D8737FDD5B10" name="X8665D8737FDD5B10"></a></p>
<div class="ChapSects"><a href="chap51.html#X8665D8737FDD5B10">51 <span class="Heading">Semigroups and Monoids</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X80AF5F307DBDC2B4">51.1 <span class="Heading">Semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7B412E5B8543E9B7">51.1-1 IsSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7F55D28F819B2817">51.1-2 <span class="Heading">Semigroup</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X8678D40878CC09A1">51.1-3 Subsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X782B7BDD8252581C">51.1-4 IsSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X79FBBEC9841544F3">51.1-5 SemigroupByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X80ED104F85AE5134">51.1-6 AsSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7B1EEA3E82BFE09F">51.1-7 AsSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X78147A247963F23B">51.1-8 GeneratorsOfSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7C72E4747BF642BB">51.1-9 <span class="Heading">FreeSemigroup</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7E67E13F7A01F8D3">51.1-10 SemigroupByMultiplicationTable</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X872FE34A7814C0DC">51.2 <span class="Heading">Monoids</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X861C523483C6248C">51.2-1 IsMonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7F95328B7C7E49EA">51.2-2 <span class="Heading">Monoid</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X8322D01E84912FD7">51.2-3 Submonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X85129EE387CC4D28">51.2-4 MonoidByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7B22038F832B9C0F">51.2-5 AsMonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7C9A12DE8287B2D3">51.2-6 AsSubmonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X83CA2E7279C44718">51.2-7 GeneratorsOfMonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7EC77C0184587181">51.2-8 TrivialSubmonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X79FA3FA978CA2E43">51.2-9 <span class="Heading">FreeMonoid</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7BFE938E857CA27D">51.2-10 MonoidByMultiplicationTable</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X840847B6810BD0E1">51.3 <span class="Heading">Inverse semigroups and monoids</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X78B13FED7AFB4326">51.3-1 InverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X80D9B9A98736051B">51.3-2 InverseMonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X87C373597F787250">51.3-3 GeneratorsOfInverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7A3B262C85B6D475">51.3-4 GeneratorsOfInverseMonoid</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7C4C6EE681E7A57E">51.3-5 IsInverseSubsemigroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X78274024827F306D">51.4 <span class="Heading">Properties of Semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7C4663827C5ACEF1">51.4-1 IsRegularSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X87532A76854347E0">51.4-2 IsRegularSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7AFDE0F17AE516C5">51.4-3 InversesOfSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X836F4692839F4874">51.4-4 IsSimpleSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X8193A60F839C064E">51.4-5 IsZeroSimpleSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X85F7E5CD86F0643B">51.4-6 IsZeroGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7FFEC81F7F2C4EAA">51.4-7 IsReesCongruenceSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X83F1529479D56665">51.4-8 IsInverseSemigroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X7BB32D508183C0F1">51.5 <span class="Heading">Ideals of semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7D5CEE4D7D4318ED">51.5-1 SemigroupIdealByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7F01FFB18125DED5">51.5-2 ReesCongruenceOfSemigroupIdeal</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7A3FF85984345540">51.5-3 IsLeftSemigroupIdeal</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X7C0782D57C01E327">51.6 <span class="Heading">Congruences for semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X78E34B737F0E009F">51.6-1 IsSemigroupCongruence</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X822DB78579BCB7B5">51.6-2 IsReesCongruence</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X87CE9EAB7EE3A128">51.7 <span class="Heading">Quotients</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X80EF3E6F842BE64E">51.7-1 IsQuotientSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7CAD3D1687956F7F">51.7-2 HomomorphismQuotientSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X87120C46808F7289">51.7-3 QuotientSemigroupPreimage</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X80C6C718801855E9">51.8 <span class="Heading">Green's Relations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X786CEDD4814A9079">51.8-1 GreensRRelation</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X8364D69987D49DE1">51.8-2 IsGreensRelation</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X82A11A087AFB3EB0">51.8-3 IsGreensClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7AA204C8850F9070">51.8-4 IsGreensLessThanOrEqual</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X86FE5F5585EBCF13">51.8-5 RClassOfHClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X78C56F4A78E0088A">51.8-6 EggBoxOfDClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X803237F17ACD44E3">51.8-7 DisplayEggBoxOfDClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X87C75A9D86122D93">51.8-8 GreensRClassOfElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X844D20467A644811">51.8-9 GreensRClasses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7CB4A18685B850E2">51.8-10 GroupHClassOfGreensDClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X79D740EF7F0E53BD">51.8-11 IsGroupHClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7F5860927CAD920F">51.8-12 IsRegularDClass</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap51.html#X8225A9EC87A255E6">51.9 <span class="Heading">Rees Matrix Semigroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X8526AA557CDF6C49">51.9-1 ReesMatrixSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X78D2A48C87FC8E38">51.9-2 ReesMatrixSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7964B5C97FB9C07D">51.9-3 IsomorphismReesMatrixSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7F6B852B81488C86">51.9-4 IsReesMatrixSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7A0DE1F28470295E">51.9-5 ReesMatrixSemigroupElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7F03BE707AC7F8A0">51.9-6 IsReesMatrixSubsemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X780BB78A79275244">51.9-7 IsReesMatrixSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X879384D479EB1D82">51.9-8 Matrix</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X82FC5D6980C66AC4">51.9-9 <span class="Heading">Rows and columns</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7D9719F887AFCF8F">51.9-10 UnderlyingSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap51.html#X7D1D9A0382064B8F">51.9-11 AssociatedReesMatrixSemigroupOfDClass</a></span>
</div></div>
</div>
<h3>51 <span class="Heading">Semigroups and Monoids</span></h3>
<p>This chapter describes functions for creating semigroups and monoids and determining information about them.</p>
<p><a id="X80AF5F307DBDC2B4" name="X80AF5F307DBDC2B4"></a></p>
<h4>51.1 <span class="Heading">Semigroups</span></h4>
<p><a id="X7B412E5B8543E9B7" name="X7B412E5B8543E9B7"></a></p>
<h5>51.1-1 IsSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSemigroup</code>( <var class="Arg">D</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the object <var class="Arg">D</var> is a semigroup. A <em>semigroup</em> is a magma (see <a href="chap35.html#X873E502F7D21C39C"><span class="RefLink">35</span></a>) with associative multiplication.</p>
<p><a id="X7F55D28F819B2817" name="X7F55D28F819B2817"></a></p>
<h5>51.1-2 <span class="Heading">Semigroup</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Semigroup</code>( <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Semigroup</code>( <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form, <code class="func">Semigroup</code> returns the semigroup generated by the arguments <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <span class="SimpleMath">...</span>, that is, the closure of these elements under multiplication. In the second form, <code class="func">Semigroup</code> returns the semigroup generated by the elements in the homogeneous list <var class="Arg">gens</var>; a square matrix as only argument is treated as one generator, not as a list of generators.</p>
<p>It is <em>not</em> checked whether the underlying multiplication is associative, use <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>) and <code class="func">IsAssociative</code> (<a href="chap35.html#X7C83B5A47FD18FB7"><span class="RefLink">35.4-7</span></a>) if you want to check whether a magma is in fact a semigroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:= Transformation( [ 2, 3, 4, 1 ] );</span>
Transformation( [ 2, 3, 4, 1 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">b:= Transformation( [ 2, 2, 3, 4 ] );</span>
Transformation( [ 2, 2 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">s:= Semigroup(a, b);</span>
<transformation semigroup on 4 pts with 2 generators>
</pre></div>
<p><a id="X8678D40878CC09A1" name="X8678D40878CC09A1"></a></p>
<h5>51.1-3 Subsemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Subsemigroup</code>( <var class="Arg">S</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubsemigroupNC</code>( <var class="Arg">S</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>are just synonyms of <code class="func">Submagma</code> (<a href="chap35.html#X8268EAA47E4A3A64"><span class="RefLink">35.2-7</span></a>) and <code class="func">SubmagmaNC</code> (<a href="chap35.html#X8268EAA47E4A3A64"><span class="RefLink">35.2-7</span></a>), respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:=GeneratorsOfSemigroup(s)[1];</span>
Transformation( [ 2, 3, 4, 1 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">t:=Subsemigroup(s,[a]);</span>
<commutative transformation semigroup on 4 pts with 1 generator>
</pre></div>
<p><a id="X782B7BDD8252581C" name="X782B7BDD8252581C"></a></p>
<h5>51.1-4 IsSubsemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSubsemigroup</code>( <var class="Arg">S</var>, <var class="Arg">T</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>
<p>This operation returns <code class="keyw">true</code> if the semigroup <var class="Arg">T</var> is a subsemigroup of the semigroup <var class="Arg">S</var> and <code class="keyw">false</code> if it is not.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );</span>
Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=Semigroup(f);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubsemigroup(FullTransformationSemigroup(4), T);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup(f);; T:=Semigroup(f^2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubsemigroup(S, T); </span>
true</pre></div>
<p><a id="X79FBBEC9841544F3" name="X79FBBEC9841544F3"></a></p>
<h5>51.1-5 SemigroupByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SemigroupByGenerators</code>( <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the underlying operation of <code class="func">Semigroup</code> (<a href="chap51.html#X7F55D28F819B2817"><span class="RefLink">51.1-2</span></a>).</p>
<p><a id="X80ED104F85AE5134" name="X80ED104F85AE5134"></a></p>
<h5>51.1-6 AsSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsSemigroup</code>( <var class="Arg">C</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">C</var> is a collection whose elements form a semigroup (see <code class="func">IsSemigroup</code> (<a href="chap51.html#X7B412E5B8543E9B7"><span class="RefLink">51.1-1</span></a>)) then <code class="func">AsSemigroup</code> returns this semigroup. Otherwise <code class="keyw">fail</code> is returned.</p>
<p><a id="X7B1EEA3E82BFE09F" name="X7B1EEA3E82BFE09F"></a></p>
<h5>51.1-7 AsSubsemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsSubsemigroup</code>( <var class="Arg">D</var>, <var class="Arg">C</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a domain and <var class="Arg">C</var> a collection. If <var class="Arg">C</var> is a subset of <var class="Arg">D</var> that forms a semigroup then <code class="func">AsSubsemigroup</code> returns this semigroup, with parent <var class="Arg">D</var>. Otherwise <code class="keyw">fail</code> is returned.</p>
<p><a id="X78147A247963F23B" name="X78147A247963F23B"></a></p>
<h5>51.1-8 GeneratorsOfSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Semigroup generators of a semigroup <var class="Arg">D</var> are the same as magma generators, see <code class="func">GeneratorsOfMagma</code> (<a href="chap35.html#X872E05B478EC20CA"><span class="RefLink">35.4-1</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfSemigroup(s);</span>
[ Transformation( [ 2, 3, 4, 1 ] ), Transformation( [ 2, 2 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfSemigroup(t);</span>
[ Transformation( [ 2, 3, 4, 1 ] ) ]
</pre></div>
<p><a id="X7C72E4747BF642BB" name="X7C72E4747BF642BB"></a></p>
<h5>51.1-9 <span class="Heading">FreeSemigroup</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">names</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeSemigroup</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">infinity</var>, <var class="Arg">name</var>, <var class="Arg">init</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with a positive integer <var class="Arg">rank</var>, <code class="func">FreeSemigroup</code> returns a free semigroup on <var class="Arg">rank</var> generators. If the optional argument <var class="Arg">name</var> is given then the generators are printed as <var class="Arg">name</var><code class="code">1</code>, <var class="Arg">name</var><code class="code">2</code> etc., that is, each name is the concatenation of the string <var class="Arg">name</var> and an integer from <code class="code">1</code> to <var class="Arg">range</var>. The default for <var class="Arg">name</var> is the string <code class="code">"s"</code>.</p>
<p>Called in the second form, <code class="func">FreeSemigroup</code> returns a free semigroup on as many generators as arguments, printed as <var class="Arg">name1</var>, <var class="Arg">name2</var> etc.</p>
<p>Called in the third form, <code class="func">FreeSemigroup</code> returns a free semigroup on as many generators as the length of the list <var class="Arg">names</var>, the <span class="SimpleMath">i</span>-th generator being printed as <var class="Arg">names</var><span class="SimpleMath">[i]</span>.</p>
<p>Called in the fourth form, <code class="func">FreeSemigroup</code> returns a free semigroup on infinitely many generators, where the first generators are printed by the names in the list <var class="Arg">init</var>, and the other generators by <var class="Arg">name</var> and an appended number.</p>
<p>If the extra argument <var class="Arg">wfilt</var> is given, it must be either <code class="func">IsSyllableWordsFamily</code> (<a href="chap37.html#X7869716C84EA9D81"><span class="RefLink">37.6-6</span></a>) or <code class="func">IsLetterWordsFamily</code> (<a href="chap37.html#X7E36F7897D82417F"><span class="RefLink">37.6-2</span></a>) or <code class="func">IsWLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>) or <code class="func">IsBLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>). This filter then specifies the representation used for the elements of the free semigroup (see <a href="chap37.html#X80A9F39582ED296E"><span class="RefLink">37.6</span></a>). If no such filter is given, a letter representation is used.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f1 := FreeSemigroup( 3 );</span>
<free semigroup on the generators [ s1, s2, s3 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">f2 := FreeSemigroup( 3 , "generator" );</span>
<free semigroup on the generators
[ generator1, generator2, generator3 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">f3 := FreeSemigroup( "gen1" , "gen2" );</span>
<free semigroup on the generators [ gen1, gen2 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">f4 := FreeSemigroup( ["gen1" , "gen2"] );</span>
<free semigroup on the generators [ gen1, gen2 ]>
</pre></div>
<p>Also see Chapter <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>
<p>Each free object defines a unique alphabet (and a unique family of words). Its generators are the letters of this alphabet, thus words of length one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">FreeGroup( 5 );</span>
<free group on the generators [ f1, f2, f3, f4, f5 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">FreeGroup( "a", "b" );</span>
<free group on the generators [ a, b ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">FreeGroup( infinity );</span>
<free group with infinity generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">FreeSemigroup( "x", "y" );</span>
<free semigroup on the generators [ x, y ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">FreeMonoid( 7 );</span>
<free monoid on the generators [ m1, m2, m3, m4, m5, m6, m7 ]>
</pre></div>
<p>Remember that names are just a help for printing and do not necessarily distinguish letters. It is possible to create arbitrarily weird situations by choosing strange names for the letters.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= FreeGroup( "x", "x" ); gens:= GeneratorsOfGroup( f );;</span>
<free group on the generators [ x, x ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens[1] = gens[2];</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= FreeGroup( "f1*f2", "f2^-1", "Group( [ f1, f2 ] )" );</span>
<free group on the generators [ f1*f2, f2^-1, Group( [ f1, f2 ] ) ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= GeneratorsOfGroup( f );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens[1]*gens[2];</span>
f1*f2*f2^-1
<span class="GAPprompt">gap></span> <span class="GAPinput">gens[1]/gens[3];</span>
f1*f2*Group( [ f1, f2 ] )^-1
<span class="GAPprompt">gap></span> <span class="GAPinput">gens[3]/gens[1]/gens[2];</span>
Group( [ f1, f2 ] )*f1*f2^-1*f2^-1^-1
</pre></div>
<p><a id="X7E67E13F7A01F8D3" name="X7E67E13F7A01F8D3"></a></p>
<h5>51.1-10 SemigroupByMultiplicationTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SemigroupByMultiplicationTable</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the semigroup whose multiplication is defined by the square matrix <var class="Arg">A</var> (see <code class="func">MagmaByMultiplicationTable</code> (<a href="chap35.html#X85CD1E7678295CA6"><span class="RefLink">35.3-1</span></a>)) if such a semigroup exists. Otherwise <code class="keyw">fail</code> is returned.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);</span>
<semigroup with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">SemigroupByMultiplicationTable([[1,2,3],[2,3,1],[3,2,1]]);</span>
fail
</pre></div>
<p><a id="X872FE34A7814C0DC" name="X872FE34A7814C0DC"></a></p>
<h4>51.2 <span class="Heading">Monoids</span></h4>
<p><a id="X861C523483C6248C" name="X861C523483C6248C"></a></p>
<h5>51.2-1 IsMonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMonoid</code>( <var class="Arg">D</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em>monoid</em> is a magma-with-one (see <a href="chap35.html#X873E502F7D21C39C"><span class="RefLink">35</span></a>) with associative multiplication.</p>
<p><a id="X7F95328B7C7E49EA" name="X7F95328B7C7E49EA"></a></p>
<h5>51.2-2 <span class="Heading">Monoid</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Monoid</code>( <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Monoid</code>( <var class="Arg">gens</var>[, <var class="Arg">id</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>In the first form, <code class="func">Monoid</code> returns the monoid generated by the arguments <var class="Arg">gen1</var>, <var class="Arg">gen2</var>, <span class="SimpleMath">...</span>, that is, the closure of these elements under multiplication and taking the 0-th power. In the second form, <code class="func">Monoid</code> returns the monoid generated by the elements in the homogeneous list <var class="Arg">gens</var>; a square matrix as only argument is treated as one generator, not as a list of generators. In the second form, the identity element <var class="Arg">id</var> may be given as the second argument.</p>
<p>It is <em>not</em> checked whether the underlying multiplication is associative, use <code class="func">MagmaWithOne</code> (<a href="chap35.html#X7854B23286B17321"><span class="RefLink">35.2-2</span></a>) and <code class="func">IsAssociative</code> (<a href="chap35.html#X7C83B5A47FD18FB7"><span class="RefLink">35.4-7</span></a>) if you want to check whether a magma-with-one is in fact a monoid.</p>
<p><a id="X8322D01E84912FD7" name="X8322D01E84912FD7"></a></p>
<h5>51.2-3 Submonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Submonoid</code>( <var class="Arg">M</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubmonoidNC</code>( <var class="Arg">M</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>are just synonyms of <code class="func">SubmagmaWithOne</code> (<a href="chap35.html#X7F295EBC7A9CE87E"><span class="RefLink">35.2-8</span></a>) and <code class="func">SubmagmaWithOneNC</code> (<a href="chap35.html#X7F295EBC7A9CE87E"><span class="RefLink">35.2-8</span></a>), respectively.</p>
<p><a id="X85129EE387CC4D28" name="X85129EE387CC4D28"></a></p>
<h5>51.2-4 MonoidByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonoidByGenerators</code>( <var class="Arg">gens</var>[, <var class="Arg">one</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the underlying operation of <code class="func">Monoid</code> (<a href="chap51.html#X7F95328B7C7E49EA"><span class="RefLink">51.2-2</span></a>).</p>
<p><a id="X7B22038F832B9C0F" name="X7B22038F832B9C0F"></a></p>
<h5>51.2-5 AsMonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsMonoid</code>( <var class="Arg">C</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">C</var> is a collection whose elements form a monoid (see <code class="func">IsMonoid</code> (<a href="chap51.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>)) then <code class="func">AsMonoid</code> returns this monoid. Otherwise <code class="keyw">fail</code> is returned.</p>
<p><a id="X7C9A12DE8287B2D3" name="X7C9A12DE8287B2D3"></a></p>
<h5>51.2-6 AsSubmonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsSubmonoid</code>( <var class="Arg">D</var>, <var class="Arg">C</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">D</var> be a domain and <var class="Arg">C</var> a collection. If <var class="Arg">C</var> is a subset of <var class="Arg">D</var> that forms a monoid then <code class="func">AsSubmonoid</code> returns this monoid, with parent <var class="Arg">D</var>. Otherwise <code class="keyw">fail</code> is returned.</p>
<p><a id="X83CA2E7279C44718" name="X83CA2E7279C44718"></a></p>
<h5>51.2-7 GeneratorsOfMonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfMonoid</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Monoid generators of a monoid <var class="Arg">M</var> are the same as magma-with-one generators (see <code class="func">GeneratorsOfMagmaWithOne</code> (<a href="chap35.html#X87DD93EC8061DD81"><span class="RefLink">35.4-2</span></a>)).</p>
<p><a id="X7EC77C0184587181" name="X7EC77C0184587181"></a></p>
<h5>51.2-8 TrivialSubmonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TrivialSubmonoid</code>( <var class="Arg">M</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is just a synonym for <code class="func">TrivialSubmagmaWithOne</code> (<a href="chap35.html#X837DA95883CFB985"><span class="RefLink">35.4-13</span></a>).</p>
<p><a id="X79FA3FA978CA2E43" name="X79FA3FA978CA2E43"></a></p>
<h5>51.2-9 <span class="Heading">FreeMonoid</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">rank</var>[, <var class="Arg">name</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">name1</var>, <var class="Arg">name2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">names</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FreeMonoid</code>( [<var class="Arg">wfilt</var>, ]<var class="Arg">infinity</var>, <var class="Arg">name</var>, <var class="Arg">init</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Called with a positive integer <var class="Arg">rank</var>, <code class="func">FreeMonoid</code> returns a free monoid on <var class="Arg">rank</var> generators. If the optional argument <var class="Arg">name</var> is given then the generators are printed as <var class="Arg">name</var><code class="code">1</code>, <var class="Arg">name</var><code class="code">2</code> etc., that is, each name is the concatenation of the string <var class="Arg">name</var> and an integer from <code class="code">1</code> to <var class="Arg">range</var>. The default for <var class="Arg">name</var> is the string <code class="code">"m"</code>.</p>
<p>Called in the second form, <code class="func">FreeMonoid</code> returns a free monoid on as many generators as arguments, printed as <var class="Arg">name1</var>, <var class="Arg">name2</var> etc.</p>
<p>Called in the third form, <code class="func">FreeMonoid</code> returns a free monoid on as many generators as the length of the list <var class="Arg">names</var>, the <span class="SimpleMath">i</span>-th generator being printed as <var class="Arg">names</var><code class="code">[</code><span class="SimpleMath">i</span><code class="code">]</code>.</p>
<p>Called in the fourth form, <code class="func">FreeMonoid</code> returns a free monoid on infinitely many generators, where the first generators are printed by the names in the list <var class="Arg">init</var>, and the other generators by <var class="Arg">name</var> and an appended number.</p>
<p>If the extra argument <var class="Arg">wfilt</var> is given, it must be either <code class="func">IsSyllableWordsFamily</code> (<a href="chap37.html#X7869716C84EA9D81"><span class="RefLink">37.6-6</span></a>) or <code class="func">IsLetterWordsFamily</code> (<a href="chap37.html#X7E36F7897D82417F"><span class="RefLink">37.6-2</span></a>) or <code class="func">IsWLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>) or <code class="func">IsBLetterWordsFamily</code> (<a href="chap37.html#X8719E7F27CDA1995"><span class="RefLink">37.6-4</span></a>). This filter then specifies the representation used for the elements of the free monoid (see <a href="chap37.html#X80A9F39582ED296E"><span class="RefLink">37.6</span></a>). If no such filter is given, a letter representation is used.</p>
<p>Also see Chapter <a href="chap51.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>
<p><a id="X7BFE938E857CA27D" name="X7BFE938E857CA27D"></a></p>
<h5>51.2-10 MonoidByMultiplicationTable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonoidByMultiplicationTable</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the monoid whose multiplication is defined by the square matrix <var class="Arg">A</var> (see <code class="func">MagmaByMultiplicationTable</code> (<a href="chap35.html#X85CD1E7678295CA6"><span class="RefLink">35.3-1</span></a>)) if such a monoid exists. Otherwise <code class="keyw">fail</code> is returned.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MonoidByMultiplicationTable([[1,2,3],[2,3,1],[3,1,2]]);</span>
<monoid with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">MonoidByMultiplicationTable([[1,2,3],[2,3,1],[1,3,2]]);</span>
fail
</pre></div>
<p><a id="X840847B6810BD0E1" name="X840847B6810BD0E1"></a></p>
<h4>51.3 <span class="Heading">Inverse semigroups and monoids</span></h4>
<p><a id="X78B13FED7AFB4326" name="X78B13FED7AFB4326"></a></p>
<h5>51.3-1 InverseSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InverseSemigroup</code>( <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: An inverse semigroup.</p>
<p>If <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... are (any combination) of associative elements with unique semigroup inverses, semigroups of such elements, or collections of such elements, then <code class="code">InverseSemigroup</code> returns the inverse semigroup generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, .... This equals the semigroup generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... and their inverses.</p>
<p>For example if <code class="code">S</code> and <code class="code">T</code> are inverse semigroups, then <code class="code">InverseSemigroup(S, f, Idempotents(T));</code> is the inverse semigroup generated by <code class="code">Union(GeneratorsOfInverseSemigroup(S), [f], Idempotents(T)));</code>.</p>
<p>As present, the only associative elements with unique semigroup inverses, which do not always generate a group, are partial permutations; see Chapter <a href="chap54.html#X7D6495F77B8A77BD"><span class="RefLink">54</span></a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=InverseSemigroup(</span>
<span class="GAPprompt">></span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=InverseSemigroup(S, f, Idempotents(SymmetricInverseSemigroup(5)));</span>
<inverse partial perm semigroup on 10 pts with 34 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(S);</span>
1233</pre></div>
<p><a id="X80D9B9A98736051B" name="X80D9B9A98736051B"></a></p>
<h5>51.3-2 InverseMonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InverseMonoid</code>( <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: An inverse monoid.</p>
<p>If <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... are (any combination) of associative elements with unique semigroup inverses, semigroups of such elements, or collections of such elements, then <code class="code">InverseMonoid</code> returns the inverse monoid generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, .... This equals the monoid generated by the union of <var class="Arg">obj1</var>, <var class="Arg">obj2</var>, ... and their inverses.</p>
<p>As present, the only associative elements with unique semigroup inverses are partial permutations; see Chapter <a href="chap54.html#X7D6495F77B8A77BD"><span class="RefLink">54</span></a>.</p>
<p>For example if <code class="code">S</code> and <code class="code">T</code> are inverse monoids, then <code class="code">InverseMonoid(S, f, Idempotents(T));</code> is the inverse monoid generated by <code class="code">Union(GeneratorsOfInverseMonoid(S), [f], Idempotents(T)));</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=InverseMonoid(</span>
<span class="GAPprompt">></span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], </span>
<span class="GAPprompt">></span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=InverseMonoid(S, f, Idempotents(SymmetricInverseSemigroup(5)));</span>
<inverse partial perm monoid on 10 pts with 35 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(S);</span>
1243</pre></div>
<p><a id="X87C373597F787250" name="X87C373597F787250"></a></p>
<h5>51.3-3 GeneratorsOfInverseSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfInverseSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The generators of an inverse semigroup.</p>
<p>If <var class="Arg">S</var> is an inverse semigroup, then <code class="code">GeneratorsOfInverseSemigroup</code> returns the generators used to define <var class="Arg">S</var>, i.e. an inverse semigroup generating set for <var class="Arg">S</var>.</p>
<p>The value of <code class="code">GeneratorsOfSemigroup(<var class="Arg">S</var>)</code>, for an inverse semigroup <var class="Arg">S</var>, is the union of inverse semigroup generator and their inverses. So, <var class="Arg">S</var> is the semigroup, as opposed to inverse semigroup, generated by the elements of <code class="code">GeneratorsOfInverseSemigroup(<var class="Arg">S</var>)</code> and their inverses.</p>
<p>If <var class="Arg">S</var> is an inverse monoid, then <code class="code">GeneratorsOfInverseSemigroup</code> returns the generators used to define <var class="Arg">S</var>, as described above, and the identity of <var class="Arg">S</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=InverseMonoid(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PartialPerm( [ 1, 2 ], [ 1, 4 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PartialPerm( [ 1, 2, 4 ], [ 3, 4, 1 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfSemigroup(S);</span>
[ <identity partial perm on [ 1, 2, 3, 4 ]>, [2,4](1), [2,4,1,3],
[4,2](1), [3,1,4,2] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfInverseSemigroup(S);</span>
[ [2,4](1), [2,4,1,3], <identity partial perm on [ 1, 2, 3, 4 ]> ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfMonoid(S);</span>
[ [2,4](1), [2,4,1,3], [4,2](1), [3,1,4,2] ]</pre></div>
<p><a id="X7A3B262C85B6D475" name="X7A3B262C85B6D475"></a></p>
<h5>51.3-4 GeneratorsOfInverseMonoid</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfInverseMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The generators of an inverse monoid.</p>
<p>If <var class="Arg">S</var> is an inverse monoid, then <code class="code">GeneratorsOfInverseMonoid</code> returns the generators used to define <var class="Arg">S</var>, i.e. an inverse monoid generating set for <var class="Arg">S</var>.</p>
<p>There are four different possible generating sets which define an inverse monoid. More precisely, an inverse monoid can be generated as an inverse monoid, inverse semigroup, monoid, or semigroup. The different generating sets in each case can be obtained using <code class="func">GeneratorsOfInverseMonoid</code>, <code class="func">GeneratorsOfInverseSemigroup</code> (<a href="chap51.html#X87C373597F787250"><span class="RefLink">51.3-3</span></a>), <code class="func">GeneratorsOfMonoid</code> (<a href="chap51.html#X83CA2E7279C44718"><span class="RefLink">51.2-7</span></a>), and <code class="func">GeneratorsOfSemigroup</code> (<a href="chap51.html#X78147A247963F23B"><span class="RefLink">51.1-8</span></a>), respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=InverseMonoid(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PartialPerm( [ 1, 2 ], [ 1, 4 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> PartialPerm( [ 1, 2, 4 ], [ 3, 4, 1 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfInverseMonoid(S);</span>
[ [2,4](1), [2,4,1,3] ]</pre></div>
<p><a id="X7C4C6EE681E7A57E" name="X7C4C6EE681E7A57E"></a></p>
<h5>51.3-5 IsInverseSubsemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsInverseSubsemigroup</code>( <var class="Arg">S</var>, <var class="Arg">T</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>
<p>If the semigroup <var class="Arg">T</var> is an inverse subsemigroup of the semigroup <var class="Arg">S</var>, then this operation returns <code class="keyw">true</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=InverseSemigroup(RandomPartialPerm(4));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsInverseSubsemigroup(SymmetricInverseSemigroup(4), T); </span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=Semigroup(Transformation( [ 1, 2, 4, 5, 6, 3, 7, 8 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 3, 3, 4, 5, 6, 2, 7, 8 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation([ 1, 2, 5, 3, 6, 8, 4, 4 ] ));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsInverseSubsemigroup(FullTransformationSemigroup(8), T);</span>
true</pre></div>
<p><a id="X78274024827F306D" name="X78274024827F306D"></a></p>
<h4>51.4 <span class="Heading">Properties of Semigroups</span></h4>
<p>The following functions determine information about semigroups.</p>
<p><a id="X7C4663827C5ACEF1" name="X7C4663827C5ACEF1"></a></p>
<h5>51.4-1 IsRegularSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRegularSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">S</var> is regular, i.e., if every \(\mathcal{D}\)-class of <var class="Arg">S</var> is regular.</p>
<p><a id="X87532A76854347E0" name="X87532A76854347E0"></a></p>
<h5>51.4-2 IsRegularSemigroupElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRegularSemigroupElement</code>( <var class="Arg">S</var>, <var class="Arg">x</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">x</var> has a general inverse in <var class="Arg">S</var>, i.e., there is an element <span class="SimpleMath">y ∈ <var class="Arg">S</var></span> such that <span class="SimpleMath"><var class="Arg">x</var> y <var class="Arg">x</var> = <var class="Arg">x</var></span> and <span class="SimpleMath">y <var class="Arg">x</var> y = y</span>.</p>
<p><a id="X7AFDE0F17AE516C5" name="X7AFDE0F17AE516C5"></a></p>
<h5>51.4-3 InversesOfSemigroupElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InversesOfSemigroupElement</code>( <var class="Arg">S</var>, <var class="Arg">x</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: The inverses of an element of a semigroup.</p>
<p><code class="code">InversesOfSemigroupElement</code> returns a list of the inverses of the element <var class="Arg">x</var> in the semigroup <var class="Arg">S</var>.</p>
<p>An element <var class="Arg">y</var> in <var class="Arg">S</var> is an <em>inverse</em> of <var class="Arg">x</var> if <code class="code"><var class="Arg">x</var>*y*<var class="Arg">x</var>=<var class="Arg">x</var></code> and <code class="code">y*<var class="Arg">x</var>*y=y</code>. The element <var class="Arg">x</var> has an inverse if and only if <var class="Arg">x</var> is a regular element of <var class="Arg">S</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup([ Transformation( [ 3, 1, 4, 2, 5, 2, 1, 6, 1 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput"> Transformation( [ 5, 7, 8, 8, 7, 5, 9, 1, 9 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput"> Transformation( [ 7, 6, 2, 8, 4, 7, 5, 8, 3 ] ) ]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Transformation( [ 3, 1, 4, 2, 5, 2, 1, 6, 1 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">InversesOfSemigroupElement(S, x);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRegularSemigroupElement(S, x);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Transformation( [ 1, 9, 7, 5, 5, 1, 9, 5, 1 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Set(InversesOfSemigroupElement(S, x));</span>
[ Transformation( [ 1, 2, 3, 5, 5, 1, 3, 5, 2 ] ),
Transformation( [ 1, 5, 1, 1, 5, 1, 3, 1, 2 ] ),
Transformation( [ 1, 5, 1, 2, 5, 1, 3, 2, 2 ] ) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRegularSemigroupElement(S, x);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ReesZeroMatrixSemigroup(Group((1,2,3)), </span>
<span class="GAPprompt">></span> <span class="GAPinput">[ [ (), () ], [ (), 0 ], [ (), (1,2,3) ] ]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=ReesZeroMatrixSemigroupElement(S, 2, (1,2,3), 3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">InversesOfSemigroupElement(S, x);</span>
[ (1,(1,2,3),3), (1,(1,3,2),1), (2,(),3), (2,(1,2,3),1) ]</pre></div>
<p><a id="X836F4692839F4874" name="X836F4692839F4874"></a></p>
<h5>51.4-4 IsSimpleSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSimpleSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if and only if the semigroup <var class="Arg">S</var> has no proper ideals.</p>
<p><a id="X8193A60F839C064E" name="X8193A60F839C064E"></a></p>
<h5>51.4-5 IsZeroSimpleSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsZeroSimpleSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if and only if the semigroup has no proper ideals except for 0, where <var class="Arg">S</var> is a semigroup with zero. If the semigroup does not find its zero, then a break-loop is entered.</p>
<p><a id="X85F7E5CD86F0643B" name="X85F7E5CD86F0643B"></a></p>
<h5>51.4-6 IsZeroGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsZeroGroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>is <code class="keyw">true</code> if and only if the semigroup <var class="Arg">S</var> is a group with zero adjoined.</p>
<p><a id="X7FFEC81F7F2C4EAA" name="X7FFEC81F7F2C4EAA"></a></p>
<h5>51.4-7 IsReesCongruenceSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesCongruenceSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if <var class="Arg">S</var> is a Rees Congruence semigroup, that is, if all congruences of <var class="Arg">S</var> are Rees Congruences.</p>
<p><a id="X83F1529479D56665" name="X83F1529479D56665"></a></p>
<h5>51.4-8 IsInverseSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsInverseSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsInverseMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>
<p>A semigroup is an <em>inverse semigroup</em> if every element <code class="code">x</code> has a unique semigroup inverse, that is, a unique element <code class="code">y</code> such that <code class="code">x*y*x=x</code> and <code class="code">y*x*y=y</code>.</p>
<p>A monoid that happens to be an inverse semigroup is called an <em>inverse monoid</em>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup( Transformation( [ 1, 2, 4, 5, 6, 3, 7, 8 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 3, 3, 4, 5, 6, 2, 7, 8 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 1, 2, 5, 3, 6, 8, 4, 4 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsInverseSemigroup(S);</span>
true</pre></div>
<p><a id="X7BB32D508183C0F1" name="X7BB32D508183C0F1"></a></p>
<h4>51.5 <span class="Heading">Ideals of semigroups</span></h4>
<p>Ideals of semigroups are the same as ideals of the semigroup when considered as a magma. For documentation on ideals for magmas, see <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>).</p>
<p><a id="X7D5CEE4D7D4318ED" name="X7D5CEE4D7D4318ED"></a></p>
<h5>51.5-1 SemigroupIdealByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SemigroupIdealByGenerators</code>( <var class="Arg">S</var>, <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><var class="Arg">S</var> is a semigroup, <var class="Arg">gens</var> is a list of elements of <var class="Arg">S</var>. Returns the two-sided ideal of <var class="Arg">S</var> generated by <var class="Arg">gens</var>.</p>
<p><a id="X7F01FFB18125DED5" name="X7F01FFB18125DED5"></a></p>
<h5>51.5-2 ReesCongruenceOfSemigroupIdeal</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReesCongruenceOfSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A two sided ideal <var class="Arg">I</var> of a semigroup <var class="Arg">S</var> defines a congruence on <var class="Arg">S</var> given by <span class="SimpleMath">∆ ∪ I × I</span>.</p>
<p><a id="X7A3FF85984345540" name="X7A3FF85984345540"></a></p>
<h5>51.5-3 IsLeftSemigroupIdeal</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLeftSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRightSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSemigroupIdeal</code>( <var class="Arg">I</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Categories of semigroup ideals.</p>
<p><a id="X7C0782D57C01E327" name="X7C0782D57C01E327"></a></p>
<h4>51.6 <span class="Heading">Congruences for semigroups</span></h4>
<p>An equivalence or a congruence on a semigroup is the equivalence or congruence on the semigroup considered as a magma. So, to deal with equivalences and congruences on semigroups, magma functions are used. For documentation on equivalences and congruences for magmas, see <code class="func">Magma</code> (<a href="chap35.html#X839147CF813312D6"><span class="RefLink">35.2-1</span></a>).</p>
<p><a id="X78E34B737F0E009F" name="X78E34B737F0E009F"></a></p>
<h5>51.6-1 IsSemigroupCongruence</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSemigroupCongruence</code>( <var class="Arg">c</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>a magma congruence <var class="Arg">c</var> on a semigroup.</p>
<p><a id="X822DB78579BCB7B5" name="X822DB78579BCB7B5"></a></p>
<h5>51.6-2 IsReesCongruence</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesCongruence</code>( <var class="Arg">c</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if and only if the congruence <var class="Arg">c</var> has at most one nonsingleton congruence class.</p>
<p><a id="X87CE9EAB7EE3A128" name="X87CE9EAB7EE3A128"></a></p>
<h4>51.7 <span class="Heading">Quotients</span></h4>
<p>Given a semigroup and a congruence on the semigroup, one can construct a new semigroup: the quotient semigroup. The following functions deal with quotient semigroups in <strong class="pkg">GAP</strong>. For a semigroup <span class="SimpleMath">S</span>, elements of a quotient semigroup are equivalence classes of elements of the <code class="func">QuotientSemigroupPreimage</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>) value under the congruence given by the value of <code class="func">QuotientSemigroupCongruence</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>).</p>
<p>It is probably most useful for calculating the elements of the equivalence classes by using <code class="func">Elements</code> (<a href="chap30.html#X79B130FC7906FB4C"><span class="RefLink">30.3-11</span></a>) or by looking at the images of elements of <code class="func">QuotientSemigroupPreimage</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>) under the map returned by <code class="func">QuotientSemigroupHomomorphism</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>), which maps the <code class="func">QuotientSemigroupPreimage</code> (<a href="chap51.html#X87120C46808F7289"><span class="RefLink">51.7-3</span></a>) value to <var class="Arg">S</var>.</p>
<p>For intensive computations in a quotient semigroup, it is probably worthwhile finding another representation as the equality test could involve enumeration of the elements of the congruence classes being compared.</p>
<p><a id="X80EF3E6F842BE64E" name="X80EF3E6F842BE64E"></a></p>
<h5>51.7-1 IsQuotientSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsQuotientSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of semigroups constructed from another semigroup and a congruence on it.</p>
<p><a id="X7CAD3D1687956F7F" name="X7CAD3D1687956F7F"></a></p>
<h5>51.7-2 HomomorphismQuotientSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomomorphismQuotientSemigroup</code>( <var class="Arg">cong</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>for a congruence <var class="Arg">cong</var> and a semigroup <var class="Arg">S</var>. Returns the homomorphism from <var class="Arg">S</var> to the quotient of <var class="Arg">S</var> by <var class="Arg">cong</var>.</p>
<p><a id="X87120C46808F7289" name="X87120C46808F7289"></a></p>
<h5>51.7-3 QuotientSemigroupPreimage</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuotientSemigroupPreimage</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuotientSemigroupCongruence</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuotientSemigroupHomomorphism</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>for a quotient semigroup <var class="Arg">S</var>.</p>
<p><a id="X80C6C718801855E9" name="X80C6C718801855E9"></a></p>
<h4>51.8 <span class="Heading">Green's Relations</span></h4>
<p>Green's equivalence relations play a very important role in semigroup theory. In this section we describe how they can be used in <strong class="pkg">GAP</strong>.</p>
<p>The five Green's relations are <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">H</span>, <span class="SimpleMath">D</span>: two elements <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span> from a semigroup <span class="SimpleMath">S</span> are <span class="SimpleMath">R</span>-related if and only if <span class="SimpleMath">xS^1 = yS^1</span>, <span class="SimpleMath">L</span>-related if and only if <span class="SimpleMath">S^1 x = S^1 y</span> and <span class="SimpleMath">J</span>-related if and only if <span class="SimpleMath">S^1 xS^1 = S^1 yS^1</span>; finally, <span class="SimpleMath">H = R ∧ L</span>, and <span class="SimpleMath">D = R ∘ L</span>.</p>
<p>Recall that relations <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span> and <span class="SimpleMath">J</span> induce a partial order among the elements of the semigroup <span class="SimpleMath">S</span>: for two elements <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span> from <span class="SimpleMath">S</span>, we say that <span class="SimpleMath">x</span> is less than or equal to <span class="SimpleMath">y</span> in the order on <span class="SimpleMath">R</span> if <span class="SimpleMath">xS^1 ⊆ yS^1</span>; similarly, <span class="SimpleMath">x</span> is less than or equal to <span class="SimpleMath">y</span> under <span class="SimpleMath">L</span> if <span class="SimpleMath">S^1x ⊆ S^1y</span>; finally <span class="SimpleMath">x</span> is less than or equal to <span class="SimpleMath">y</span> under <span class="SimpleMath">J</span> if <span class="SimpleMath">S^1 xS^1 ⊆ S^1 tS^1</span>. We extend this preorder to a partial order on equivalence classes in the natural way.</p>
<p><a id="X786CEDD4814A9079" name="X786CEDD4814A9079"></a></p>
<h5>51.8-1 GreensRRelation</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensRRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensLRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensJRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensDRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensHRelation</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The Green's relations (which are equivalence relations) are attributes of the semigroup <var class="Arg">semigroup</var>.</p>
<p><a id="X8364D69987D49DE1" name="X8364D69987D49DE1"></a></p>
<h5>51.8-2 IsGreensRelation</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensRelation</code>( <var class="Arg">bin-relation</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensRRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensLRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensJRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensHRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensDRelation</code>( <var class="Arg">equiv-relation</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Categories for the Green's relations.</p>
<p><a id="X82A11A087AFB3EB0" name="X82A11A087AFB3EB0"></a></p>
<h5>51.8-3 IsGreensClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensRClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensLClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensJClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensHClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensDClass</code>( <var class="Arg">equiv-class</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>return <code class="keyw">true</code> if the equivalence class <var class="Arg">equiv-class</var> is a Green's class of any type, or of <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">H</span>, <span class="SimpleMath">D</span> type, respectively, or <code class="keyw">false</code> otherwise.</p>
<p><a id="X7AA204C8850F9070" name="X7AA204C8850F9070"></a></p>
<h5>51.8-4 IsGreensLessThanOrEqual</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGreensLessThanOrEqual</code>( <var class="Arg">C1</var>, <var class="Arg">C2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the Green's class <var class="Arg">C1</var> is less than or equal to <var class="Arg">C2</var> under the respective ordering (as defined above), and <code class="keyw">false</code> otherwise.</p>
<p>Only defined for <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span> and <span class="SimpleMath">J</span> classes.</p>
<p><a id="X86FE5F5585EBCF13" name="X86FE5F5585EBCF13"></a></p>
<h5>51.8-5 RClassOfHClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RClassOfHClass</code>( <var class="Arg">H</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LClassOfHClass</code>( <var class="Arg">H</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>are attributes reflecting the natural ordering over the various Green's classes. <code class="func">RClassOfHClass</code> and <code class="func">LClassOfHClass</code> return the <span class="SimpleMath">R</span> and <span class="SimpleMath">L</span> classes, respectively, in which an <span class="SimpleMath">H</span> class is contained.</p>
<p><a id="X78C56F4A78E0088A" name="X78C56F4A78E0088A"></a></p>
<h5>51.8-6 EggBoxOfDClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EggBoxOfDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns for a Green's <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var> a matrix whose rows represent <span class="SimpleMath">R</span> classes and columns represent <span class="SimpleMath">L</span> classes. The entries are the <span class="SimpleMath">H</span> classes.</p>
<p><a id="X803237F17ACD44E3" name="X803237F17ACD44E3"></a></p>
<h5>51.8-7 DisplayEggBoxOfDClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DisplayEggBoxOfDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>displays a "picture" of the <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var>, as an array of 1s and 0s. A 1 represents a group <span class="SimpleMath">H</span> class.</p>
<p><a id="X87C75A9D86122D93" name="X87C75A9D86122D93"></a></p>
<h5>51.8-8 GreensRClassOfElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensRClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensLClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensDClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensJClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensHClassOfElement</code>( <var class="Arg">S</var>, <var class="Arg">a</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Creates the <span class="SimpleMath">X</span> class of the element <var class="Arg">a</var> in the semigroup <var class="Arg">S</var> where <span class="SimpleMath">X</span> is one of <span class="SimpleMath">L</span>, <span class="SimpleMath">R</span>, <span class="SimpleMath">D</span>, <span class="SimpleMath">J</span>, or <span class="SimpleMath">H</span>.</p>
<p><a id="X844D20467A644811" name="X844D20467A644811"></a></p>
<h5>51.8-9 GreensRClasses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensRClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensLClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensJClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensDClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GreensHClasses</code>( <var class="Arg">semigroup</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>return the <span class="SimpleMath">R</span>, <span class="SimpleMath">L</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">H</span>, or <span class="SimpleMath">D</span> Green's classes, respectively for semigroup <var class="Arg">semigroup</var>. <code class="func">EquivalenceClasses</code> (<a href="chap33.html#X879439897EF4D728"><span class="RefLink">33.7-3</span></a>) for a Green's relation lead to one of these functions.</p>
<p><a id="X7CB4A18685B850E2" name="X7CB4A18685B850E2"></a></p>
<h5>51.8-10 GroupHClassOfGreensDClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroupHClassOfGreensDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>for a <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var> of a semigroup, returns a group <span class="SimpleMath">H</span> class of the <span class="SimpleMath">D</span> class, or <code class="keyw">fail</code> if there is no group <span class="SimpleMath">H</span> class.</p>
<p><a id="X79D740EF7F0E53BD" name="X79D740EF7F0E53BD"></a></p>
<h5>51.8-11 IsGroupHClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGroupHClass</code>( <var class="Arg">Hclass</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the Green's <span class="SimpleMath">H</span> class <var class="Arg">Hclass</var> is a group, which in turn is true if and only if <var class="Arg">Hclass</var><span class="SimpleMath">^2</span> intersects <var class="Arg">Hclass</var>.</p>
<p><a id="X7F5860927CAD920F" name="X7F5860927CAD920F"></a></p>
<h5>51.8-12 IsRegularDClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRegularDClass</code>( <var class="Arg">Dclass</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the Greens <span class="SimpleMath">D</span> class <var class="Arg">Dclass</var> is regular. A <span class="SimpleMath">D</span> class is regular if and only if each of its elements is regular, which in turn is true if and only if any one element of <var class="Arg">Dclass</var> is regular. Idempotents are regular since <span class="SimpleMath">eee = e</span> so it follows that a Green's <span class="SimpleMath">D</span> class containing an idempotent is regular. Conversely, it is true that a regular <span class="SimpleMath">D</span> class must contain at least one idempotent. (See <a href="chapBib.html#biBHowie76">[How76, Prop. 3.2]</a>.)</p>
<p><a id="X8225A9EC87A255E6" name="X8225A9EC87A255E6"></a></p>
<h4>51.9 <span class="Heading">Rees Matrix Semigroups</span></h4>
<p>In this section, we describe the functions in <strong class="pkg">GAP</strong> for Rees matrix and 0-matrix semigroups and their subsemigroups. The importance of these semigroups lies in the fact that Rees matrix semigroups over groups are exactly the completely simple semigroups, and Rees 0-matrix semigroups over groups are the completely 0-simple semigroups.</p>
<p>Let <span class="SimpleMath">I</span> and <span class="SimpleMath">J</span> be sets, let <span class="SimpleMath">S</span> be a semigroup, and let <span class="SimpleMath">P=(p_ji)_j∈ J, i∈ I</span> be a <span class="SimpleMath">|J|× |I|</span> matrix with entries in <span class="SimpleMath">S</span>. Then the <em>Rees matrix semigroup</em> with underlying semigroup <span class="SimpleMath">S</span> and matrix <span class="SimpleMath">P</span> is just the direct product <span class="SimpleMath">I× S × J</span> with multiplication defined by</p>
<p class="pcenter">(i, s, j)(k, t, l)=(i,s\cdot p_{j,k}\cdot t, l).</p>
<p>Rees 0-matrix semigroups are defined as follows. If <span class="SimpleMath">I</span>, <span class="SimpleMath">J</span>, <span class="SimpleMath">S</span>, and <span class="SimpleMath">P</span> are as above and <span class="SimpleMath">0</span> denotes a new element, then the <em>Rees 0-matrix semigroup</em> with underlying semigroup <span class="SimpleMath">S</span> and matrix <span class="SimpleMath">P</span> is <span class="SimpleMath">(I× S× J)∪ {0}</span> with multiplication defined by</p>
<p class="pcenter">(i, s, j)(k, t, l)=(i, s\cdot p_{j,k}\cdot t, l)</p>
<p>when <span class="SimpleMath">p_j,k</span> is not <span class="SimpleMath">0</span> and <span class="SimpleMath">0</span> if <span class="SimpleMath">p_j,k</span> is 0.</p>
<p>If <span class="SimpleMath">R</span> is a Rees matrix or 0-matrix semigroup, then the <em>rows</em> of <span class="SimpleMath">R</span> is the index set <span class="SimpleMath">I</span>, the <em>columns</em> of <span class="SimpleMath">R</span> is the index set <span class="SimpleMath">J</span>, the semigroup <span class="SimpleMath">S</span> is the <em>underlying semigroup</em> of <span class="SimpleMath">R</span>, and the <em>matrix</em> <span class="SimpleMath">P</span> is the matrix of <span class="SimpleMath">S</span>.</p>
<p>Thoroughout this section, wherever the distinction is unimportant, we will refer to Rees matrix or 0-matrix semigroups collectively as Rees matrix semigroups.</p>
<p>Multiplication of elements of a Rees matrix semigroup obviously depends on the matrix used to create the semigroup. Hence elements of a Rees matrix semigroup can only be created with reference to the semigroup to which they belong. More specifically, every collection or semigroup of Rees matrix semigroup elements is created from a specific Rees matrix semigroup, which contains the whole family of its elements. So, it is not possible to multiply or compare elements belonging to distinct Rees matrix semigroups, since they belong to different families. This situation is similar to, say, free groups, and different to, say, permutations, which belong to a single family, and where arbitrary permutations can be compared and multiplied without reference to any group containing them.</p>
<p>A subsemigroup of a Rees matrix semigroup is not necessarily a Rees matrix semigroup. Every semigroup consisting of elements of a Rees matrix semigroup satisfies the property <code class="func">IsReesMatrixSubsemigroup</code> (<a href="chap51.html#X7F03BE707AC7F8A0"><span class="RefLink">51.9-6</span></a>) and every semigroup of Rees 0-matrix semigroup elements satisfies <code class="func">IsReesZeroMatrixSubsemigroup</code> (<a href="chap51.html#X7F03BE707AC7F8A0"><span class="RefLink">51.9-6</span></a>).</p>
<p>Rees matrix and 0-matrix semigroups can be created using the operations <code class="func">ReesMatrixSemigroup</code> (<a href="chap51.html#X8526AA557CDF6C49"><span class="RefLink">51.9-1</span></a>) and <code class="func">ReesZeroMatrixSemigroup</code> (<a href="chap51.html#X8526AA557CDF6C49"><span class="RefLink">51.9-1</span></a>), respectively, from an underlying semigroup and a matrix. Rees matrix semigroups created in this way contain the whole family of their elements. Every element of a Rees matrix semigroup belongs to a unique semigroup created in this way; every subsemigroup of a Rees matrix semigroup is a subsemigroup of a unique semigroup created in this way.</p>
<p>Subsemigroups of Rees matrix semigroups can also be created by specifying generators. A subsemigroup of a Rees matrix semigroup <span class="SimpleMath">I× U× J</span> satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) if and only if it is equal to <span class="SimpleMath">I'× U'× J'</span> where <span class="SimpleMath">I'⊆ I</span>, <span class="SimpleMath">J'⊆ J</span>, and <span class="SimpleMath">U'</span> is a subsemigroup of <span class="SimpleMath">U</span>. The analogous statements holds for Rees 0-matrix semigroups.</p>
<p>It is not necessarily the case that a simple subsemigroups of Rees matrix semigroups satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>). A Rees matrix semigroup is simple if and only if its underlying semigroup is simple. A finite semigroup is simple if and only if it is isomorphic to a Rees matrix semigroup over a group; this isomorphism can be obtained explicitly using <code class="func">IsomorphismReesMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>
<p>Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to satisfy <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>). A Rees 0-matrix semigroup with more than 2 elements is 0-simple if and only if every row and every column of its matrix contains a non-zero entry, and its underlying semigroup is simple. A finite semigroup is 0-simple if and only if it is isomorphic to a Rees 0-matrix semigroup over a group; again this isomorphism can be found by using <code class="func">IsomorphismReesMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>
<p>Elements of a Rees matrix or 0-matrix semigroup belong to the categories <code class="func">IsReesMatrixSemigroupElement</code> (<a href="chap51.html#X7F6B852B81488C86"><span class="RefLink">51.9-4</span></a>) and <code class="func">IsReesZeroMatrixSemigroupElement</code> (<a href="chap51.html#X7F6B852B81488C86"><span class="RefLink">51.9-4</span></a>), respectively. Such elements can be created directly using the functions <code class="func">ReesMatrixSemigroupElement</code> (<a href="chap51.html#X7A0DE1F28470295E"><span class="RefLink">51.9-5</span></a>) and <code class="func">ReesZeroMatrixSemigroupElement</code> (<a href="chap51.html#X7A0DE1F28470295E"><span class="RefLink">51.9-5</span></a>).</p>
<p>A semigroup in <strong class="pkg">GAP</strong> can either satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) but not both.</p>
<p><a id="X8526AA557CDF6C49" name="X8526AA557CDF6C49"></a></p>
<h5>51.9-1 ReesMatrixSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReesMatrixSemigroup</code>( <var class="Arg">S</var>, <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReesZeroMatrixSemigroup</code>( <var class="Arg">S</var>, <var class="Arg">mat</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A Rees matrix or 0-matrix semigroup.</p>
<p>When <var class="Arg">S</var> is a semigroup and <var class="Arg">mat</var> is an <code class="code">m</code> by <code class="code">n</code> matrix with entries in <var class="Arg">S</var>, the function <code class="code">ReesMatrixSemigroup</code> returns the <code class="code">n</code> by <code class="code">m</code> Rees matrix semigroup over <var class="Arg">S</var> with multiplication defined by <var class="Arg">mat</var>.</p>
<p>The arguments of <code class="code">ReesZeroMatrixSemigroup</code> should be a semigroup <var class="Arg">S</var> and an <code class="code">m</code> by <code class="code">n</code> matrix <var class="Arg">mat</var> with entries in <var class="Arg">S</var> or equal to the integer <code class="code">0</code>. <code class="code">ReesZeroMatrixSemigroup</code> returns the <code class="code">n</code> by <code class="code">m</code> Rees 0-matrix semigroup over <var class="Arg">S</var> with multiplication defined by <var class="Arg">mat</var>. In <strong class="pkg">GAP</strong> a Rees 0-matrix semigroup always contains a multiplicative zero element, regardless of whether there are any entries in <var class="Arg">mat</var> which are equal to <code class="code">0</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Random(AllGroups(Size, 32));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=List([1..5], x-> List([1..3], y-> Random(G)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ReesMatrixSemigroup(G, mat);</span>
<Rees matrix semigroup 3x5 over <pc group of size 32 with
5 generators>>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[[(), 0, (), ()], [0, 0, 0, 0]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ReesZeroMatrixSemigroup(DihedralGroup(IsPermGroup, 8), mat);</span>
<Rees 0-matrix semigroup 4x2 over Group([ (1,2,3,4), (2,4) ])>
</pre></div>
<p><a id="X78D2A48C87FC8E38" name="X78D2A48C87FC8E38"></a></p>
<h5>51.9-2 ReesMatrixSubsemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReesMatrixSubsemigroup</code>( <var class="Arg">R</var>, <var class="Arg">I</var>, <var class="Arg">U</var>, <var class="Arg">J</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReesZeroMatrixSubsemigroup</code>( <var class="Arg">R</var>, <var class="Arg">I</var>, <var class="Arg">U</var>, <var class="Arg">J</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Returns: A Rees matrix or 0-matrix subsemigroup.</p>
<p>The arguments of <code class="code">ReesMatrixSubsemigroup</code> should be a Rees matrix semigroup <var class="Arg">R</var>, subsets <var class="Arg">I</var> and <var class="Arg">J</var> of the rows and columns of <var class="Arg">R</var>, respectively, and a subsemigroup <var class="Arg">S</var> of the underlying semigroup of <var class="Arg">R</var>. <code class="code">ReesMatrixSubsemigroup</code> returns the subsemigroup of <var class="Arg">R</var> generated by the direct product of <var class="Arg">I</var>, <var class="Arg">U</var>, and <var class="Arg">J</var>.</p>
<p>The usage and returned value of <code class="code">ReesZeroMatrixSubsemigroup</code> is analogous when <var class="Arg">R</var> is a Rees 0-matrix semigroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=CyclicGroup(IsPermGroup, 1007);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[[(), 0, 0], [0, (), 0], [0, 0, ()], </span>
<span class="GAPprompt">></span> <span class="GAPinput">[(), (), ()], [0, 0, ()]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat);</span>
<Rees 0-matrix semigroup 3x5 over
<permutation group of size 1007 with 1 generators>>
<span class="GAPprompt">gap></span> <span class="GAPinput">ReesZeroMatrixSubsemigroup(R, [1,3], G, [1..5]);</span>
<Rees 0-matrix semigroup 2x5 over
<permutation group of size 1007 with 1 generators>>
</pre></div>
<p><a id="X7964B5C97FB9C07D" name="X7964B5C97FB9C07D"></a></p>
<h5>51.9-3 IsomorphismReesMatrixSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsomorphismReesMatrixSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: An isomorphism.</p>
<p>Every finite simple semigroup is isomorphic to a Rees matrix semigroup over a group, and every finite 0-simple semigroup is isomorphic to a Rees 0-matrix semigroup over a group.</p>
<p>If the argument <var class="Arg">S</var> is a simple semigroup, then <code class="code">IsomorphismReesMatrixSemigroup</code> returns an isomorphism to a Rees matrix semigroup over a group. If the argument is a 0-simple semigroup, then an isomorphism to a Rees 0-matrix semigroup over a group is returned.</p>
<p>See <code class="func">IsSimpleSemigroup</code> (<a href="chap51.html#X836F4692839F4874"><span class="RefLink">51.4-4</span></a>) and <code class="func">IsZeroSimpleSemigroup</code> (<a href="chap51.html#X8193A60F839C064E"><span class="RefLink">51.4-5</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup(Transformation( [ 2, 1, 1, 2, 1 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 3, 4, 3, 4, 4 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 3, 4, 3, 4, 3 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 4, 3, 3, 4, 4 ] ));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSimpleSemigroup(S);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Range(IsomorphismReesMatrixSemigroup(S));</span>
<Rees matrix semigroup 4x2 over Group([ (1,2) ])>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[[(), 0, 0], [0, (), 0], [0, 0, ()]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(Group((1,2,4,5,6)), mat);</span>
<Rees 0-matrix semigroup 3x3 over Group([ (1,2,4,5,6) ])>
<span class="GAPprompt">gap></span> <span class="GAPinput">U:=ReesZeroMatrixSubsemigroup(R, [1,2], Group(()), [2,3]);</span>
<subsemigroup of 3x3 Rees 0-matrix semigroup with 4 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsZeroSimpleSemigroup(U);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">U:=ReesZeroMatrixSubsemigroup(R, [2,3], Group(()), [2,3]);</span>
<subsemigroup of 3x3 Rees 0-matrix semigroup with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsZeroSimpleSemigroup(U);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Rows(U); Columns(U);</span>
[ 2, 3 ]
[ 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">V:=Range(IsomorphismReesMatrixSemigroup(U));</span>
<Rees 0-matrix semigroup 2x2 over Group(())>
<span class="GAPprompt">gap></span> <span class="GAPinput">Rows(V); Columns(V); </span>
[ 1, 2 ]
[ 1, 2 ]</pre></div>
<p><a id="X7F6B852B81488C86" name="X7F6B852B81488C86"></a></p>
<h5>51.9-4 IsReesMatrixSemigroupElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesMatrixSemigroupElement</code>( <var class="Arg">elt</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesZeroMatrixSemigroupElement</code>( <var class="Arg">elt</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>
<p>Every element of a Rees matrix semigroup belongs to the category <code class="code">IsReesMatrixSemigroupElement</code>, and every element of a Rees 0-matrix semigroup belongs to the category <code class="code">IsReesZeroMatrixSemigroupElement</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Group((1,2,3));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[ [ (), (1,3,2) ], [ (1,3,2), () ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesMatrixSemigroup(G, mat);</span>
<Rees matrix semigroup 2x2 over Group([ (1,2,3) ])>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfSemigroup(R);</span>
[ (1,(1,2,3),1), (2,(),2) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesMatrixSemigroupElement(last[1]);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesZeroMatrixSemigroupElement(last2[1]);</span>
false</pre></div>
<p><a id="X7A0DE1F28470295E" name="X7A0DE1F28470295E"></a></p>
<h5>51.9-5 ReesMatrixSemigroupElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReesMatrixSemigroupElement</code>( <var class="Arg">R</var>, <var class="Arg">i</var>, <var class="Arg">x</var>, <var class="Arg">j</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReesZeroMatrixSemigroupElement</code>( <var class="Arg">R</var>, <var class="Arg">i</var>, <var class="Arg">x</var>, <var class="Arg">j</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: An element of a Rees matrix or <code class="code">0</code>-matrix semigroup.</p>
<p>The arguments of <var class="Arg">ReesMatrixSemigroupElement</var> should be a Rees matrix subsemigroup <var class="Arg">R</var>, elements <var class="Arg">i</var> and <var class="Arg">j</var> of the the rows and columns of <var class="Arg">R</var>, respectively, and an element <var class="Arg">x</var> of the underlying semigroup of <var class="Arg">R</var>. <code class="code">ReesMatrixSemigroupElement</code> returns the element of <var class="Arg">R</var> with row index <var class="Arg">i</var>, underlying element <var class="Arg">x</var> in the underlying semigroup of <var class="Arg">R</var>, and column index <var class="Arg">j</var>, if such an element exist, if such an element exists.</p>
<p>The usage of <code class="code">ReesZeroMatrixSemigroupElement</code> is analogous to that of <code class="code">ReesMatrixSemigroupElement</code>, when <var class="Arg">R</var> is a Rees 0-matrix semigroup.</p>
<p>The row <var class="Arg">i</var>, underlying element <var class="Arg">x</var>, and column <var class="Arg">j</var> of an element <code class="code">y</code> of a Rees matrix (or 0-matrix) semigroup can be recovered from <code class="code">y</code> using <code class="code">y[1]</code>, <code class="code">y[2]</code>, and <code class="code">y[3]</code>, respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Group((1,2,3));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[ [ 0, () ], [ (1,3,2), (1,3,2) ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat);</span>
<Rees 0-matrix semigroup 2x2 over Group([ (1,2,3) ])>
<span class="GAPprompt">gap></span> <span class="GAPinput">ReesZeroMatrixSemigroupElement(R, 1, (1,2,3), 2);</span>
(1,(1,2,3),2)
<span class="GAPprompt">gap></span> <span class="GAPinput">MultiplicativeZero(R);</span>
0</pre></div>
<p><a id="X7F03BE707AC7F8A0" name="X7F03BE707AC7F8A0"></a></p>
<h5>51.9-6 IsReesMatrixSubsemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesMatrixSubsemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesZeroMatrixSubsemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>
<p>Every semigroup consisting of elements of a Rees matrix semigroup satisfies the property <code class="func">IsReesMatrixSubsemigroup</code> and every semigroup of Rees 0-matrix semigroup elements satisfies <code class="func">IsReesZeroMatrixSubsemigroup</code>.</p>
<p>Note that a subsemigroup of a Rees matrix semigroup is not necessarily a Rees matrix semigroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=DihedralGroup(32);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=List([1..2], x-> List([1..10], x-> Random(G)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesMatrixSemigroup(G, mat);</span>
<Rees matrix semigroup 10x2 over <pc group of size 32 with
5 generators>>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup(GeneratorsOfSemigroup(R)); </span>
<subsemigroup of 10x2 Rees matrix semigroup with 14 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesMatrixSubsemigroup(S); </span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup(GeneratorsOfSemigroup(R)[1]);</span>
<subsemigroup of 10x2 Rees matrix semigroup with 1 generator>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesMatrixSubsemigroup(S);</span>
true</pre></div>
<p><a id="X780BB78A79275244" name="X780BB78A79275244"></a></p>
<h5>51.9-7 IsReesMatrixSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesMatrixSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsReesZeroMatrixSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>
<p>A subsemigroup of a Rees matrix semigroup <span class="SimpleMath">I× U× J</span> satisfies <code class="func">IsReesMatrixSemigroup</code> if and only if it is equal to <span class="SimpleMath">I'× U'× J'</span> where <span class="SimpleMath">I'⊆ I</span>, <span class="SimpleMath">J'⊆ J</span>, and <span class="SimpleMath">U'</span> is a subsemigroup of <span class="SimpleMath">U</span>. It can be costly to check that a subsemigroup defined by generators satisfies <code class="code">IsReesMatrixSemigroup</code>. The analogous statements holds for Rees 0-matrix semigroups.</p>
<p>It is not necessarily the case that a simple subsemigroups of Rees matrix semigroups satisfies <code class="func">IsReesMatrixSemigroup</code>. A Rees matrix semigroup is simple if and only if its underlying semigroup is simple. A finite semigroup is simple if and only if it is isomorphic to a Rees matrix semigroup over a group; this isomorphism can be obtained explicitly using <code class="func">IsomorphismReesMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>
<p>Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to satisfy <code class="func">IsReesZeroMatrixSemigroup</code>. A Rees 0-matrix semigroup with more than 2 elements is 0-simple if and only if every row and every column of its matrix contains a non-zero entry, and its underlying semigroup is simple. A finite semigroup is 0-simple if and only if it is isomorphic to a Rees 0-matrix semigroup over a group; again this isomorphism can be found by using <code class="func">IsomorphismReesMatrixSemigroup</code> (<a href="chap51.html#X7964B5C97FB9C07D"><span class="RefLink">51.9-3</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=PSL(2,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[ [ 0, (), 0, (2,6,3,5,4) ], </span>
<span class="GAPprompt">></span> <span class="GAPinput">[ (), 0, (), 0 ], [ 0, 0, 0, () ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat);</span>
<Rees 0-matrix semigroup 4x3 over Group([ (3,5)(4,6), (1,2,5)
(3,4,6) ])>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesZeroMatrixSemigroup(R);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">U:=ReesZeroMatrixSubsemigroup(R, [1..3], Group(()), [1..2]);</span>
<subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesZeroMatrixSemigroup(U);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">V:=Semigroup(GeneratorsOfSemigroup(U));</span>
<subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesZeroMatrixSemigroup(V);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup(Transformation([1,1]), Transformation([1,2]));</span>
<commutative transformation monoid on 2 pts with 1 generator>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSimpleSemigroup(S);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[[0, One(S), 0, One(S)], [One(S), 0, One(S), 0], </span>
<span class="GAPprompt">></span> <span class="GAPinput">[0, 0, 0, One(S)]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(S, mat);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">U:=ReesZeroMatrixSubsemigroup(R, [1..3], </span>
<span class="GAPprompt">></span> <span class="GAPinput">Semigroup(Transformation([1,1])), [1..2]);</span>
<subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:=Semigroup(GeneratorsOfSemigroup(U));</span>
<subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesZeroMatrixSemigroup(V);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=Semigroup(</span>
<span class="GAPprompt">></span> <span class="GAPinput">ReesZeroMatrixSemigroupElement(R, 3, Transformation( [ 1, 1 ] ), 3), </span>
<span class="GAPprompt">></span> <span class="GAPinput">ReesZeroMatrixSemigroupElement(R, 2, Transformation( [ 1, 1 ] ), 2));</span>
<subsemigroup of 4x3 Rees 0-matrix semigroup with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsReesZeroMatrixSemigroup(T);</span>
false</pre></div>
<p><a id="X879384D479EB1D82" name="X879384D479EB1D82"></a></p>
<h5>51.9-8 Matrix</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Matrix</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A matrix.</p>
<p>If <var class="Arg">R</var> is a Rees matrix or 0-matrix semigroup, then <code class="code">Matrix</code> returns the matrix used to define multiplication in <var class="Arg">R</var>.</p>
<p>More specifically, if <var class="Arg">R</var> is a Rees matrix or 0-matrix semigroup, which is a proper subsemigroup of another such semigroup, then <code class="code">Matrix</code> returns the matrix used to define the Rees matrix (or 0-matrix) semigroup consisting of the whole family to which the elements of <var class="Arg">R</var> belong. Thus, for example, a <code class="code">1</code> by <code class="code">1</code> Rees matrix semigroup can have a <code class="code">65</code> by <code class="code">15</code> matrix.</p>
<p>Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have a matrix. Such a subsemigroup <var class="Arg">R</var> has a matrix if and only if it satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=AlternatingGroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=[[(), (), ()], [(), (), ()]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesMatrixSemigroup(G, mat);</span>
<Rees matrix semigroup 3x2 over Alt( [ 1 .. 5 ] )>
<span class="GAPprompt">gap></span> <span class="GAPinput">Matrix(R); </span>
[ [ (), (), () ], [ (), (), () ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesMatrixSubsemigroup(R, [1,2], Group(()), [2]);</span>
<subsemigroup of 3x2 Rees matrix semigroup with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">Matrix(R);</span>
[ [ (), (), () ], [ (), (), () ] ]</pre></div>
<p><a id="X82FC5D6980C66AC4" name="X82FC5D6980C66AC4"></a></p>
<h5>51.9-9 <span class="Heading">Rows and columns</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Rows</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Columns</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: The rows or columns of <var class="Arg">R</var>.</p>
<p><code class="code">Rows</code> returns the rows of the Rees matrix or 0-matrix semigroup <var class="Arg">R</var>. Note that the rows of the semigroup correspond to the columns of the matrix used to define multiplication in <var class="Arg">R</var>.</p>
<p><code class="code">Columns</code> returns the columns of the Rees matrix or 0-matrix semigroup <var class="Arg">R</var>. Note that the columns of the semigroup correspond to the rows of the matrix used to define multiplication in <var class="Arg">R</var>.</p>
<p>Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have rows or columns. Such a subsemigroup <var class="Arg">R</var> has rows and columns if and only if it satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Group((1,2,3));; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">mat:=List([1..100], x-> List([1..200], x->Random(G)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ReesZeroMatrixSemigroup(G, mat); </span>
<Rees 0-matrix semigroup 200x100 over Group([ (1,2,3) ])>
<span class="GAPprompt">gap></span> <span class="GAPinput">Rows(R);</span>
[ 1 .. 200 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Columns(R);</span>
[ 1 .. 100 ]</pre></div>
<p><a id="X7D9719F887AFCF8F" name="X7D9719F887AFCF8F"></a></p>
<h5>51.9-10 UnderlyingSemigroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnderlyingSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnderlyingSemigroup</code>( <var class="Arg">R</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A semigroup.</p>
<p><code class="code">UnderlyingSemigroup</code> returns the underlying semigroup of the Rees matrix or 0-matrix semigroup <var class="Arg">R</var>.</p>
<p>Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have an underlying semigroup. Such a subsemigroup <var class="Arg">R</var> has an underlying semigroup if and only if it satisfies <code class="func">IsReesMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>) or <code class="func">IsReesZeroMatrixSemigroup</code> (<a href="chap51.html#X780BB78A79275244"><span class="RefLink">51.9-7</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Semigroup(Transformation( [ 2, 1, 1, 2, 1 ] ), </span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation( [ 3, 4, 3, 4, 4 ] ), Transformation([ 3, 4, 3, 4, 3 ] ),</span>
<span class="GAPprompt">></span> <span class="GAPinput">Transformation([ 4, 3, 3, 4, 4 ] ) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=Range(IsomorphismReesMatrixSemigroup(S)); </span>
<Rees matrix semigroup 4x2 over Group([ (1,2) ])>
<span class="GAPprompt">gap></span> <span class="GAPinput">UnderlyingSemigroup(R);</span>
Group([ (1,2) ])</pre></div>
<p><a id="X7D1D9A0382064B8F" name="X7D1D9A0382064B8F"></a></p>
<h5>51.9-11 AssociatedReesMatrixSemigroupOfDClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AssociatedReesMatrixSemigroupOfDClass</code>( <var class="Arg">D</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Returns: A Rees matrix or 0-matrix semigroup.</p>
<p>If <var class="Arg">D</var> is a regular \(\mathcal{D}\)-class of a finite semigroup <code class="code">S</code>, then there is a standard way of associating a Rees matrix semigroup to <var class="Arg">D</var>. If <var class="Arg">D</var> is a subsemigroup of <code class="code">S</code>, then <var class="Arg">D</var> is simple and hence is isomorphic to a Rees matrix semigroup. In this case, the associated Rees matrix semigroup of <var class="Arg">D</var> is just the Rees matrix semigroup isomorphic to <var class="Arg">D</var>.</p>
<p>If <var class="Arg">D</var> is not a subsemigroup of <code class="code">S</code>, then we define a semigroup with elements <var class="Arg">D</var> and a new element <code class="code">0</code> with multiplication of <span class="SimpleMath">x,y∈ D</span> defined by:</p>
<p class="pcenter">
xy=\left\{\begin{array}{ll}
x*y\ (\textrm{in }S)&\textrm{if }x*y\in D\\
0&\textrm{if }xy\not\in D.
\end{array}\right.
</p>
<p>The semigroup thus defined is 0-simple and hence is isomorphic to a Rees 0-matrix semigroup. This semigroup can also be described as the Rees quotient of the ideal generated by <var class="Arg">D</var> by it maximal subideal. The associated Rees matrix semigroup of <var class="Arg">D</var> is just the Rees 0-matrix semigroup isomorphic to the semigroup defined above.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=FullTransformationSemigroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=GreensDClasses(S)[3];</span>
{Transformation( [ 1, 1, 1, 2, 3 ] )}
<span class="GAPprompt">gap></span> <span class="GAPinput">AssociatedReesMatrixSemigroupOfDClass(D);</span>
<Rees 0-matrix semigroup 25x10 over Group([ (1,2)(3,5)(4,6), (1,3)
(2,4)(5,6) ])>
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap50.html">[Previous Chapter]</a> <a href="chap52.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|