This file is indexed.

/usr/share/expeyes/firmware/eyes.c is in expeyes-firmware-dev 3.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
/*  
EYES for Young Engineers & Scientists (EYES  1.0)
Program : eyes.c, running on AtMega32 micro-controller
Listens on the RS232 port for commands fom the PC, by eyes.py, and acts accordingly.
Author  : Ajith Kumar B.P, ( bpajith at gmail.com )
License : GNU GPL version 3
First Edit on 1-Sep-2010
Last Edit 23-Dec-2010 : added CAPTURE_M32
Last Edit 27-Jan-2011 : added ECHO
Last Edit 13-Oct-2011 : added IRSEND
*/

#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>

#define	GROUPSIZE	40	// Up to 40 commands in each group

// commands without any arguments (1 to 40)
#define GETVERSION	1	// Get the Eyes firmware version
#define DIGIN		2	// Digital Input (4 bits)
#define USOUND		3	// Send a pulse on OD1 and look for echo on ID2

// Commands with One byte argument (41 to 80) 
#define SETSAMTIME	41	// MCP3208 sampling duration
#define SETADCSIZE	42	// ADC data size (1 or 2)
#define READADC		43	// Read the specified ADC channel
#define R2FTIME		44	// Rise to Fall of signal on input pins
#define R2RTIME		45	// Rise to Fall of signal on input pins
#define F2RTIME		46	// Fall to Rise of signal on input pins
#define F2FTIME		47	// Fall to Rise of signal on input pins
#define SET2RTIME	48	// Setting of bit to rising edge
#define SET2FTIME	49	// to falling time
#define CLR2RTIME	50	// Setting of bit to rising edge
#define CLR2FTIME	51	// to falling time
#define PULSE2RTIME	52	// Pulse to rising edge
#define PULSE2FTIME	53	// Pulse to rising edge
#define SETPULSEWID	54	// width for PULSE2 functions (0 to 250)
#define SETPULSEPOL	55	// PULSE polarity (0 for HIGH true)
#define	DIGOUT 		56	// Digital output (4 bits)
#define ADC2CMP		57	// Route ADC input to ACOMP-
#define SETPWM		58	// Set 488 Hz PWM wave on TC0
#define SETPWMDAC	59	// Set 31.25 kHz PWM wave on TC0
#define GETPORT		60	// PINX data from port X
#define IRSEND		61  // IR transmission using SQR1 output

// Commands with Two bytes argument (81 to 120)
#define	SETPWM0		81	// PWM on on OSC0
#define	SETCOUNTER0	82	// Square wave on OSC2
#define	SETCOUNTER2	83	// Square wave on OSC2
#define	SETACTION	84	// Capture Actions of SET/CLR/PULSE & WAIT type
#define MULTIR2R	85	// Rising edge to a rising edge after N cycles
#define ADCTRIGS	86	// Trigger levels for read_block functions
#define SETWAVEFORM	87	// ISR Wavegen. OCR0 and which DAC from the caller
#define PULSE_D0D1	88	// Interrupt driven square wave on D0 and D1
#define SETDDR		90	// DDRX = dirmask (arg1 = X, arg2 = mask)
#define SETPORT		91	// PORTX = DATA (arg1 = X, arg2 = DATA)

// Commands with Three bytes argument (121 to 160)
#define SETDAC		121	// Serial DAC: send ch, dlo & dhi
#define	QCAPTURE01	122	// 2 bytes N, 1 byte dt. captures channel 0 and 1
#define WREEPROM	123	// Write EEPROM , 2 byte addr & 1 byte data
#define RDEEPROM	124	// Read EEPROM , 2 byte addr , 1 byte number of bytes 

// Commands with Four bytes argument (161 to 200)
#define	CAPTURE01	161	// 2 bytes N, 2 bytes dt. Capture channel 0 and 1
#define	QCAPTURE	162	// Ch, 2 byte N, 1 byte dt. 

// Commands with Five bytes argument (201 to 220)
#define	CAPTURE		201		// Ch, 2 byte N, 2 byte dt. Capture single channel MCP3208
#define CAPTURE_M32	202     // Ch, 2 byte N, 2 byte dt. Capture from, uC internal ADC

// Reply from ATmega8 to the PC
#define DONE		'D'	// Command executed successfully
#define	INVCMD		'C'	// Invalid Command
#define INVARG		'A'	// Invalid input data
#define INVBUFSIZE	'B'	// Resulting data exceeds buffersize
#define TIMEOUT		'T'	// Time measurement timed out

#define TRUE	1
#define FALSE	0
#define TIMERSIZE	50000	// count for 50 ms before clearing
#define TIMEOUTVAL	40		// 50 ms x 40 = 2 seconds
#define MAXTG		1000	// Maximum timegap for CAPTURE, usec
#define MAXTGQ		100		// Same for qcapture
#define MINTG		20		// Minimum timegap for CAPTURE, usec
#define MINTGQ		10		// Same for qcapture
#define	DEADTIME	5		// for PULSE2 calls

typedef uint16_t  u16;
typedef uint8_t  u8, *u8ptr;
typedef u8 boolean;

const char version[] PROGMEM = "ey1.0";


u16 tmp16;					// Gloabal temporary variable

#define	BUFSIZE		1800		// 1800 for atmega32
//----------------------- Global variables -----------------------------
u8 	dbuffer[2 + BUFSIZE];	// status + adc_size info + Databytes
u16 buf_index;
u8  adc_size = 1;
u8	sampling_time = 200;
u8	HTM;					// third byte of timer
u8 	pulse_width = 13;		// Used by PULSE2*time functions
u8	pulse_pol = 0;
u8	action;					// SET/CLR/PULSE and WAIT actions
u8	actionmask;				// Digital I/O bits for action
u8	triglo = 125;			// Trigger around the ADC mid range
u8	trighi = 131;


// -------------------------- Serial ADC & DAC -------------------------
#define   SPICTL	PORTD			// CK=PD2, ADCS = PD3, DACS = PD4
#define   CLK 		(1 << PD2)
#define   ADCS 		(1 << PD3)
#define   DACS 		(1 << PD4)
#define	  ADCKLO	DACS			// ADCS and CLK low
#define	  ADCKHI	DACS+CLK		// ADCS low and Clock hi
#define   CSHI		DACS+ADCS+CLK	// Both CS and Clock hi
#define	  DACKLO	ADCS			// DACS and CLK low
#define	  DACKHI	ADCS+CLK		// DACS low and Clock hi
#define   SPIWR		PORTB
#define   SPIRD	    PINB
#define	  OUTHI		2+1				// PB1 HI and pullup of PB0
#define	  OUTLO		1				// PB1 LO pullup of PB0

u8  hi;		// hi MUST be global to meet timing !!!. Need some assembly code ??
u8 lo;

//---------------------Capture using ATmega32 Internal ADC. Having some trouble !!! -------------------
void capture_m32(u8 ch, u16 np, u16 timegap)  // sqr1 = ch7, sqr2 = ch6, SENSOR = ch5
{
	ADCSRA = (1 << ADEN)  | (1<<ADSC) | 1;	// start a dummy conversion
    if(timegap < 20) lo = (1<<ADEN) | (1<<ADSC) | 1;
    else if(timegap < 40) lo = (1<<ADEN) | (1<<ADSC) | 2;
    else if(timegap < 80) lo = (1<<ADEN) | (1<<ADSC) | 3;
    else if(timegap < 160)lo = (1<<ADEN) | (1<<ADSC) | 4;
    else if(timegap < 320)lo = (1<<ADEN) | (1<<ADSC) | 5;
    else lo = (1<<ADEN) | (1<<ADSC) | 6;
	
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
      
    ADMUX = (1<<REFS0) |(1 << ADLAR) | ch; // MUX
    timegap -= 1;
	PORTC |= 128;
    while ( !(ADCSRA & (1<<ADIF)) ) ;	// wait for ADC conversion
    ADCSRA |= ADIF;						// reset ADC flag

    for(tmp16=0; tmp16 < np; ++tmp16)	// Sample in timed loop
       {
	   TCNT1 = 0;
       ADCSRA = lo;
       while ( !(ADCSRA & (1<<ADIF)) ) ;	// wait for ADC conversion
       dbuffer[buf_index++] = ADCH;
       ADCSRA |= ADIF;						// reset ADC flag
	   while(TCNT1L < timegap) ;			// Wait on counter
       }
    ADCSRA = 0;								// Disable ADC 	
	PORTC &= 127;
}

//------------------------------ Reading External ADC MCP3208 -------------------------------
void qcapture_min(u8 ch, u16 np, u8 timer)	// only for 10 microseconds spacing
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2
	timer -= 2;					// 2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1L = 0;
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = d2;			// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = d1;			// Channel # D1
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = d0;			// Channel # D0
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = CSHI;
		while(TCNT1L < timer) ;		// Wait on counter
		dbuffer[buf_index++] = hi;	// store data
		}
	PORTC &= 127;
}

void qcapture(u8 ch, u16 np, u8 timer)
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2
	timer -= 2;					// 2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1L = 0;
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = d2;			// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = d1;			// Channel # D1
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = d0;			// Channel # D0
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = CSHI;
		//asm("nop");
		while(TCNT1L < timer) ;		// Wait on counter
		asm("nop"); asm("nop"); asm("nop");
		dbuffer[buf_index++] = hi;	// store data
		}
	PORTC &= 127;
}

void qcapture01(u16 np, u8 timer)	// CH0 & CH1, only for 10 microseconds spacing
{
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	timer = timer*2 -2;		// 2 channels, 2 usec forloop overhead
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1L = 0;
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = OUTLO;			// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

				// D1 also is LO
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

				//	D0 is also LO
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
		SPICTL = CSHI;
		dbuffer[buf_index++] = hi;	// store data

		// Read Channel #1 now
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = OUTLO;		// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

				//	D1 is also LO
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = OUTHI;		// D0 is HI
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		while(TCNT1L < timer) ;		// Wait on counter
		dbuffer[buf_index++] = hi;	// store data
		asm("nop"); asm("nop");
		}
	PORTC &= 127;
}



void capture(u8 ch, u16 np, u16 timer)
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2
	timer -= 2;					// 2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1 = 0;
		SPIWR = OUTHI;						// start bit
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI; SPICTL = ADCKHI;
								// DATA remains HI, for SGL mode
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;

		SPIWR = d2;							//channel bit D2
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = d1;							//channel bit D1
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = d0;							//channel bit D0
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 5th clock

		//SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKLO; SPICTL = ADCKLO;;  // 6th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		//SPICTL = ADCKHI;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  SPICTL = ADCKHI;
		
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
		SPICTL = ADCKHI;
		lo = (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		if(adc_size > 1) 
			dbuffer[buf_index++] = lo << 4;
		dbuffer[buf_index++] = hi;

	    while(TCNT1 < timer) ;			// Wait on TCNT1	
		asm("nop");	asm("nop");	asm("nop");
		//asm("nop");	asm("nop");	asm("nop");
	    }
	PORTC &= 127;
}

void capture01(u16 np, u16 timer)
{
	timer = timer*2-2;				// 2 reads,2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1 = 0;
		SPIWR = OUTHI;						// start bit
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI; SPICTL = ADCKHI;
								// DATA remains HI, for SGL mode
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;						//channel bit D2
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;							//channel bit D1
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;							//channel bit D0
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 5th clock

		//SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKLO; SPICTL = ADCKLO;;  // 6th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		//SPICTL = ADCKHI;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  SPICTL = ADCKHI;
		
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
		SPICTL = ADCKHI;
		lo = (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		if(adc_size > 1) 
			dbuffer[buf_index++] = lo << 4;
		dbuffer[buf_index++] = hi;
		
		// Read Channel #1
		SPIWR = OUTHI;						// start bit
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI; SPICTL = ADCKHI;
								// DATA remains HI, for SGL mode
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;						//channel bit D2
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;							//channel bit D1
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = OUTHI;							//channel bit D0
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 5th clock

		//SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKLO; SPICTL = ADCKLO;;  // 6th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		//SPICTL = ADCKHI;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  SPICTL = ADCKHI;
		
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
		SPICTL = ADCKHI;
		lo = (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		if(adc_size > 1) 
			dbuffer[buf_index++] = lo << 4;
		dbuffer[buf_index++] = hi;

	    while(TCNT1 < timer) ;		// Wait on TCNT1	
		asm("nop");	asm("nop");	asm("nop");
	    }
	PORTC &= 127;
}

u16 read_sadc(u8 ch)
{
	SPIWR = OUTHI;					   	// MCP3208 start bit
	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
	SPICTL = ADCKHI; SPICTL = ADCKHI;

	//if(diffmode) SPIWR = OUTLO;			// DATA remains HI, for SGL mode

	SPICTL = ADCKLO;	SPICTL = ADCKLO;// 2nd clock
	SPICTL = ADCKHI;

	if(ch & 4) 							// D2 bit of channel
		SPIWR = OUTHI;		
	else
		SPIWR = OUTLO;		
	SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
	SPICTL = ADCKHI;

	if(ch & 2) 							// D1 bit of channel
		SPIWR = OUTHI;		
	else
		SPIWR = OUTLO;		
	SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
	SPICTL = ADCKHI;

	if(ch & 1) 							// D0 bit of channel
		SPIWR = OUTHI;		
	else
		SPIWR = OUTLO;		
	SPICTL = ADCKLO;SPICTL = ADCKLO;	// 5th clock
	SPICTL = ADCKHI; 

	SPICTL = ADCKLO;					// 6th clock

	TCCR1B = (1<<CS11);				// Counter1 Normal mode, 1 MHz
	TCNT1 = 0;
	while(TCNT1L < sampling_time) ;		// Wait for sampling
	SPICTL = ADCKHI; SPICTL = ADCKHI; 

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
	SPICTL = ADCKHI; SPICTL = ADCKHI;

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 8th clock, B11
	SPICTL = ADCKHI;
	hi = SPIRD & 1;

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
 
	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
	SPICTL = ADCKHI;
	lo = (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);
	SPICTL = CSHI;

	return (hi << 8) | lo;
}


void  fast_read_sadc(u8 ch)	// data saved in hi. Used by trigger routine only
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2

	SPIWR = OUTHI;		// start bit
	SPICTL = ADCKLO;	// 1st clock	
	SPICTL = ADCKHI;  
			// DATA remains HI, for SGL mode
	SPICTL = ADCKLO;	// 2nd clock
	SPICTL = ADCKHI;
	
	SPIWR = d2;			// Channel # D2
	SPICTL = ADCKLO;  	// 3rd clock
	SPICTL = ADCKHI;

	SPIWR = d1;			// Channel # D1
	SPICTL = ADCKLO; 	// 4th clock
	SPICTL = ADCKHI;

	SPIWR = d0;			// Channel # D0
	SPICTL = ADCKLO;	// 5th clock
	SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

	SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
	SPICTL = ADCKHI; 						// sampling end
	SPICTL = ADCKLO;	// 7th clock, Null bit
	SPICTL = ADCKHI;  

	SPICTL = ADCKLO;	// 8th clock, B11
	SPICTL = ADCKHI;
	hi = SPIRD & 1;

	SPICTL = ADCKLO;	// 9th clock, B10
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO;	// 10th clock, B9
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
 
	SPICTL = ADCKLO;	// 11th clock, B8
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO;	// 12th clock, B7
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
	
	SPICTL = ADCKLO;	// 13th clock, B6
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO;	// 14th clock, B5
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
	SPICTL = ADCKLO;	// 15th clock, B4
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
	SPICTL = CSHI;
}


void set_dac(u8 ch, u16 val)		// channel number & data
{
	SPICTL = DACKLO;						// DAC CS and CLK goes LO
	SPIWR = (ch << 1) | 1;					// channel select bit and PB0 pullup
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 1st clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;
	
	SPIWR = OUTHI;			// Buffer enable
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 2st clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;

	SPIWR = OUTHI;			// gain = 1
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 3rd clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;

	SPIWR = OUTHI;			// power down bit
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 4th clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;

	tmp16 = 0x800;
	for(hi=0; hi<12; ++hi)
		{
		if(tmp16 & val)
			SPIWR = OUTHI;			// data bit PB1 + pullup PB0
		else
			SPIWR = OUTLO;
		SPICTL = DACKLO;	SPICTL = DACKLO;	// send clock	
		SPICTL = DACKHI;    SPICTL = DACKHI;
		tmp16 >>= 1;
		}
	SPICTL = CSHI;
}


//------------------ Time Interval Measurements ----------------------
boolean wait_for_high(u8 mask)	// Wait until the Input is HIGH
{
/*Returns TRUE if any of the Digital Input Socket specified in the 
'mask' goes HIGH. If mask is zero, waits for a rising edge on CMP
input socket. Timeout after '50 * TIMEOUTVAL' milliseconds.
*/
for(;;)
    {
    if(mask)			// Check on Digins
       {
       if(PINC & mask)		// Digital Input specified by mask is HIGH ?
         break;
       }
    else			// Mask = 0 means ACMP input
      if(~ACSR & (1<< ACO))	// When AIN- goes above 1.23V, ACO goes LOW
        break;
       
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
return TRUE;
}

boolean wait_for_low(u8 mask)	// Wait until the Input is LOW
{
for(;;)
    {
    if(mask)			// Check on Digins
       {
       if(~PINC & mask)		// Digital Input specified by mask is LOW ?
         break;
       }
    else			// Mask = 0 means ACMP input
      if(ACSR & (1<< ACO))	// When AIN- goes below 1.23V, ACO goes HIGH
        break;
       
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
return TRUE;
}


boolean clear_on_rise(u8 mask)	// Clear counters on rising edge
{
/* Clears the TCNT1 register and variable HTM and returns TRUE if any of the 
Digital Input (sockets) specified in the 'mask'goes HIGH. 
If mask is zero, waits for a rising edge on analog comparator
input socket.
*/
HTM = 0;
for(;;)
    {
    if(mask)			// Check on Digins
       {
       if(PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(~ACSR & (1<< ACO))	// When AIN- goes above 1.23V, ACO goes LOW
        break;
       
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
TCNT1 = 0; 
HTM = 0;
return TRUE;
}

boolean clear_on_fall(u8 mask)	// Clear counters on falling edge
{
HTM = 0;
for(;;)
    {
    if(mask)			
       {
       if(~PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(ACSR & (1<< ACO))	// When AIN- goes below 1.23V, ACO goes HIGH
        break;

    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
TCNT1 = 0;    
HTM = 0;
return TRUE;
}

boolean mark_on_rise(u8 mask)	// Save the 24 bit counter to dbuffer
{
/* Saves the current value of TCNT1 register to variable 'tmp16' when the
Digital Input (sockets) specified in the 'mask' goes HIGH. If mask is zero,
save on the rising edge of analog comparator input socket.
TCNT1 is cleared every time it touches 'TIMESIZE' and variable 'HTM' is incremeted.
8 bit HTM and 16 bit TCNT1 together stores a 24 bit size time interval
that is send to the PC.
*/
for(;;)		
    {
    if(mask)			
       {
       if(PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(~ACSR & (1<< ACO))	// When AIN- goes above 1.23V, ACO goes LOW
        break;

    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
dbuffer[buf_index++] = TCNT1L;
dbuffer[buf_index++] = TCNT1H;
dbuffer[buf_index++] = HTM;
return TRUE;
}

boolean mark_on_fall(u8 mask)	// Save counter to dbuffer 
{
for(;;)
    {
    if(mask)	
       {
       if(~PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(ACSR & (1<< ACO))	// When AIN- goes below 1.23V, ACO goes HIGH
        break;
 
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
dbuffer[buf_index++] = TCNT1L;
dbuffer[buf_index++] = TCNT1H;
dbuffer[buf_index++] = HTM;
return TRUE;
}


//------------------ Actions before capturing waveforms ------------------
#define	ASET 		1
#define	ACLR		2
#define	APULSEHI	3
#define	APULSELO	4
#define	AWAITHI		5
#define	AWAITLO		6
#define	AWAITRISE	7
#define	AWAITFALL	8

void triggers(u8 ch, u16 tg)
{
	TCNT1 =0;
	HTM = 0;
	switch(action)
		{
		case 0:
			for(tmp16 = 0; tmp16 < 200; ++ tmp16)	// NEED changes here
				{
				fast_read_sadc(ch);		// result stored in hi
				lo = hi;
				TCNT1 = 0;
				while(TCNT1 < 20) ;
				fast_read_sadc(ch);		// result stored in hi
				if( (lo < hi) && (hi >= triglo) && (hi <= trighi) ) break;
				}
			break;

		case ASET:
	        PORTC |= actionmask;			// Set the output bits as per mask
			break;

      	case ACLR:
	        PORTC &= ~actionmask;			// Clear the output bits as per mask
			break;

		case APULSEHI:
	        PORTC |= actionmask;			// Set the output bits as per mask
			TCNT1 = 0;
			while(TCNT1 < pulse_width) ;	// delay			
	        PORTC &= ~actionmask;			// Clear the output bits as per mask
			break;

        case APULSELO:
	        PORTC &= ~actionmask; 			// Clear the output bit as per mask
			TCNT1 = 0;
			while(TCNT1 < pulse_width) ;	// delay			
    	    PORTC |= actionmask;			// Set the output bits as per mask
			break;

		case AWAITHI:
			wait_for_high(actionmask); 		// Wait for HIGH
	        break;

		case AWAITLO:
	        wait_for_low(actionmask);  		// Wait for LOW
	        break;

		case AWAITRISE:
	        wait_for_low(actionmask);  		// Wait for LOW and then
			wait_for_high(actionmask); 		// Wait for HIGH
	        break;

		case AWAITFALL:
			wait_for_high(actionmask); 		// Wait for HIGH and then
	        wait_for_low(actionmask);  		// Wait for LOW
	        break;
        }
	dbuffer[0] = 'D';						// Action timeout NOT an error ???
}


int main()
{
u8 cmd,ch;
u16 ns, tg;				// Number of samples and Time gap
DDRA = 31; 				// D0 to D4 are 555 capacitor switches. DDR will change.
PORTA = 0;				// no pullups
DDRB = 2+8;				// Serial OUT , OC0
DDRC = 0xF0;			// 4 MSBs are outputs
DDRD = 128+16+8+4;		// PWG, CSDAC, CSADC, CLOCK
PORTC= 3;				// Enable pullup resistors for PC0 and PC1


// Initialize the RS232 communication link to the PC 38400, 8, 1, E
UCSRB = (1<<RXEN) | (1<<TXEN);
//UCSRA = (1 << U2X);
UBRRH = 0;
UBRRL = 12;		// At 8MHz (12 =>38400) (25 => 19200)
UCSRC = (1<<URSEL) | (1<<UPM1) | (1<<UCSZ1) | (1<<UCSZ0); // 8,1,E

ACSR = (1<<ACBG);		// AIN(+) connected to Vbg = 1.23V
TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz

buf_index = 0;
for(;;)
    {
    while ( !(UCSRA & (1<<RXC)) ) ;			// wait for receiver data
    dbuffer[buf_index++] = UDR;		    	// Put the byte in the buffer.

    if(buf_index*GROUPSIZE > dbuffer[0])	// Process after required no. of arguments
      {
	  HTM = 0; TCNT1 = 0;		// Keep them in known state
	  cmd = dbuffer[0];
	  dbuffer[0] = 'D';			// Fill reply Assuming Success
	  buf_index = 1;			// Filling of return Data from second byte onwards
	  //PORTC |= 32; used for touble shooting
      switch(cmd)
		 {
		 case CAPTURE_M32:
			ch = dbuffer[1];					  // ATmega32 ADC channel
	  		ns = dbuffer[2] | (dbuffer[3] << 8);  // Number of samples
			tg = dbuffer[4] | (dbuffer[5] << 8) ; // Time gap
			capture_m32(ch, ns, tg);
			break;

	     case CAPTURE:
			ch = dbuffer[1];					  // ADC channel
	  		ns = dbuffer[2] | (dbuffer[3] << 8);  // Number of samples
			tg = dbuffer[4] | (dbuffer[5] << 8) ; // Time gap
			if( (ns*adc_size > BUFSIZE) || (tg < MINTG) || (tg > MAXTG))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			triggers(ch,tg);
			dbuffer[buf_index++] = adc_size;	 // adc_size to the caller
			capture(ch, ns, tg);    // dbuffer[1] is channel #		 
		    break;

	     case CAPTURE01:	// Captures ch0 & ch1
	  		ns = dbuffer[1] | (dbuffer[2] << 8);  // Number of samples
			tg = dbuffer[3] | (dbuffer[4] << 8);	 // Time gap
			if( (2*ns*adc_size > BUFSIZE) || (tg < MINTG) ||(tg > MAXTG))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			dbuffer[buf_index++] = adc_size;		 // adc_size to the caller
			triggers(0,tg);
			capture01(ns, tg); 		 
		    break;

         case QCAPTURE:
			ch = dbuffer[1];
	  		ns = dbuffer[2] | (dbuffer[3] << 8);  // Number of samples
			tg = dbuffer[4];
			if( (ns > BUFSIZE) || (tg < MINTGQ) || (tg > MAXTGQ))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			triggers(ch,tg);
			if(dbuffer[4] == 10)		// Special case Time gap
				qcapture_min(ch, ns, dbuffer[4]);
			else
				qcapture(ch, ns, dbuffer[4]);
			break;

	     case QCAPTURE01:	// Captures ch0 & ch1
	  		ns = dbuffer[1] | (dbuffer[2] << 8);   // Number of samples
			tg = dbuffer[3];
			if( (2*ns > BUFSIZE) || (tg < MINTGQ)|| (tg > MAXTGQ))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			triggers(0,tg);
			qcapture01(ns, dbuffer[3]); 	  // [3] is time gap
		    break;

 	     case SETADCSIZE:		// 12 bit ADC, set to 1 or 2 bytes
        	if(dbuffer[1] > 2)
          		{
          		dbuffer[0] = INVARG;
          		break;
          		}
	        adc_size = dbuffer[1];
    	    break;

 	     case SETSAMTIME:		// Serial ADC, sampling time, clock 6
        	if(dbuffer[1] > 250)
          		{
          		dbuffer[0] = INVARG;
          		break;
          		}
	        sampling_time = dbuffer[1];
    	    break;

	     case READADC:		// Reads the requested channel of MCP3208 ADC
			tmp16 = read_sadc(dbuffer[1]);
			tmp16 += read_sadc(dbuffer[1]);
			tmp16 += read_sadc(dbuffer[1]);
			tmp16 += read_sadc(dbuffer[1]);
			tmp16 /= 4;
			dbuffer[buf_index++] = tmp16 & 255;
			dbuffer[buf_index++] = tmp16 >> 8;
 	        break;

	     case SETDAC:			// Set the MCP4922 DAC
	  		set_dac(dbuffer[1], dbuffer[2] | (dbuffer[3] << 8));
      		break;

	     case SETACTION:
/* 
action 1 to 4 : SET/CLR/PULSE Digital Outputs just before capturing waveform.
action 5 to 8 : Waits on Levels/Edges on Digital Inputs.
actionmask MSBs keep the Digout Bits. LSBs keep the Digin Bits.
*/
			if(dbuffer[1] <= 4)
				{
				action = dbuffer[1];
				actionmask = dbuffer[2] << 4;	// keep in high nibble
				}
			else
			if(dbuffer[1] <= 8)
				{
				action = dbuffer[1];
				actionmask = dbuffer[2] & 15;	// Keep in low nibble
				}
			else
          		dbuffer[0] = INVARG;
	        break;

    	 case ADCTRIGS:
/* To get a stable display of periodic waveform, every time the digitization
should start roughly at the same position of the waveform. Two levels are
specified to allow rising and falling edge triggering.
*/    
	     	triglo = dbuffer[1];			// First Trigger level
		    trighi = dbuffer[2];			// Second Trigger Level
		    break;

		 case ADC2CMP:	// ch > 7 means disconnect routing
			if(dbuffer[1] <= 7)				
				{
		        ADMUX = dbuffer[1];		
      			SFIOR = (1 << ACME);	 	// Route ADC input to AIN-
		        ADCSRA = 0;					// Disable ADC
				}
			else
				SFIOR = 0;					// Disconnect AIN- from ADC inputs 
			break;			

// Timer Counter related functions start here.
	     case SETCOUNTER0:	// TC0 in CTC mode, caller sends CS bits & OCR0
	        TCCR0 = (1<<WGM01) | (1<<COM00) | (dbuffer[1] & 7);	
	        OCR0 = dbuffer[2];
		    break;

	     case SETCOUNTER2:	// TC2 in CTC mode, caller sends CS bits & OCR2
	        TCCR2 = (1<<WGM21) | (1<<COM20) | (dbuffer[1] & 7);	
	        OCR2 = dbuffer[2];
		    break;

	     case SETPWM:			// Set TC0 to 488 Hz PWM 
			if(dbuffer[1] == 0) 
				TCCR0 = 0;		// Switch off
			else
				{
	      		OCR0 = dbuffer[1];
    	  		TCCR0 = (1<<WGM01) | (1<<WGM00) | (1<<COM01) | (1<<CS01) | (1<<CS00); // Fast PWM mode
				}
      		break;

	     case SETPWMDAC:			// Set TC0 to 31.25 kHz PWM 
			if(dbuffer[1] == 0) 
				TCCR0 = 0;		// Switch off
			else
				{
	      		OCR0 = dbuffer[1];
    	  		TCCR0 = (1<<WGM01) | (1<<WGM00) | (1<<COM01) | (1<<CS00); // Fast PWM mode
				}
      		break;


	     case IRSEND:
			// Infrared communication vis SQR1 output
			// Sets TC2 in CTC mode, as per the byte to send
			#define SPACE 500
			OCR2 = 104;  										// f = 1e6/256/OCR2
			TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20);		// Counter2 CTC mode, pre-scale = 1
			TCNT1 = 0; while(TCNT1 < SPACE*5);		// beginning
			TCCR2 = 0;
			TCNT1 = 0; while(TCNT1 < SPACE);

			lo = dbuffer[1];			// byte to transmit
			for(hi=0; hi < 8; ++hi)
				{
				TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20);		// Counter2 CTC mode, pre-scale = 1
				TCNT1 = 0; while(TCNT1 < SPACE) ;
				TCCR2 = 0;
				TCNT1 = 0; while(TCNT1 < SPACE);
				if(lo & 128)
					{
					TCNT1 = 0; while(TCNT1 < SPACE);			
					}
				lo <<= 1;
				}
			TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20);		// Counter2 CTC mode, pre-scale = 1
			TCNT1 = 0; while(TCNT1 < SPACE) ;
			TCCR2 = 0;
			TCNT1 = 0; while(TCNT1 < SPACE) ;
		    break;

/*-------------------- Passive Time Interval Measurements.-----------------
 Time interval measurement functions using DIGITAL I/O and ACOMP Sockets.
The 16 bit Timer/Counter is used for time measurements. A 1 MHz clock is fed
to the counter and the variable HTM is incremented after when it reaches 50000.
Timeout is provided on all time measurements.
Measures the time interval between a Level Transition one Digital Input to 
another. The 8 bit input data specifies the Input Sockets to wait for.
The HIGH 4 bits contain the Sockets to look for the First Transition.
For example dbuffer[1] = 00100001, time between a transition on D1 to a 
transition on D0 is measured.
In fact it is possible to wait for more than one sockets at the same time and 
which ever come first can be taken. At the moment the Python function sets only 
a single bit in each half. The Start and Stop inputs could be same or different.

A special case arise when all the 4 bits are zero. In that case transition on
the Analog Comparator input Socket is waited for. Using the ADC2CMP function,
it is possible to route ADC input pins to Analog Comaparator Input.
*/ 
	     case R2RTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_low(hi))		// Just make sure the level is LOW
        	  if(clear_on_rise(hi))		// Clear counter on rising edge src pin 
          		if(wait_for_low(lo))	// DST pin should be LOW
            	  mark_on_rise(lo);		// Store counters at rising edge dst pin
      		break;

	     case F2FTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_high(hi))		// Just make sure the level is HIGH
        	  if(clear_on_fall(hi))		// Clear counter on falling edge src pin 
          		if(wait_for_high(lo))	// DST pin should be HIGH
            	  mark_on_fall(lo);		// Store counters at falling edge dst pin
      		break;

	     case R2FTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_low(hi))		// Just make sure the level is LOW
        	  if(clear_on_rise(hi))		// Clear counter on rising edge src pin 
            	mark_on_fall(lo);		// Store counters at falling edge dst pin
      		break;

	     case F2RTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_high(hi))		// Just make sure the level is HIGH
        	  if(clear_on_fall(hi))		// Clear counter on falling edge src pin 
            	mark_on_rise(lo);		// Store counters at rising edge dst pin
      		break;
		
	     case MULTIR2R:	
/* Measures the time interval between two rising edges on the same Input Socket.
The 4 LSBs of the first argument specifies the Input Socket to look for.
The second argument specifies the number of rising edges to be skipped in between
the two edges measured. For example dbuffer[2] = 9 returns the time taken
for 10 cycles. Averaging is useful for  better measurement accuracy.
*/    
	      	lo = dbuffer[1] & 15;		// pin number in 4 LSBs 
      		TCNT1 =0;
      		HTM = 0;
      		if(!wait_for_low(lo)) break;	// Make sure the level is LOW
      		if(!clear_on_rise(lo))break;	// Clear counter on rising edge src pin 
      		if(!wait_for_low(lo)) break;
     
      		while (dbuffer[2]--)
      			{
		        if(!wait_for_high(lo))break;
        		if(!wait_for_low(lo)) break;
        		}
			if(dbuffer[0] == TIMEOUT) break;
  			mark_on_rise(lo);				// Store counters at rising edge
		    break;

/*-------------------- Active Time Interval Measurements ----------------------
Sets the DIGITAL Output Sockets as per the 4 MSBs of the argument and measures 
the time from that to a Level Transition on the Input Socket specified by the 4 LSBs 
of the argument. 4 LSBs zero means Analog Comparator.
*/  
		 case SET2RTIME:
        	PORTC |= dbuffer[1] & 0xF0;		// SET as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_rise(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case SET2FTIME:
        	PORTC |= dbuffer[1] & 0xF0;		// SET as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_fall(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case CLR2RTIME:
        	PORTC &= ~(dbuffer[1] & 0xF0);	// CLR as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_rise(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case CLR2FTIME:
        	PORTC &= ~(dbuffer[1] & 0xF0);	// CLR as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_fall(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case SETPULSEWID:
			pulse_width = dbuffer[1];
		    break;

    	 case SETPULSEPOL:			// For the PULSE2* functions
	     	pulse_pol = dbuffer[1];
      		break;

		 case USOUND:					// Sends a Pulse of PC5, look on PC2	
       		PORTC |= (1 << PC4);			// set OD0
			TCNT1 = 0;
			while(TCNT1L < pulse_width) ;	//kill time
	        PORTC &= ~(1 << PC4);			// Clear OD0
		    HTM = 0;
			TCNT1 = 0;     
			while(TCNT1 < DEADTIME) ;		// Wait to settle noise
		    mark_on_rise(1<<PC2);			// Store counters at rising of PC2
			break;			

		 case PULSE2RTIME:	
		 case PULSE2FTIME:	
			hi = dbuffer[1] & 0xF0;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
		    if(pulse_pol)				// HIGH TRUE pulse
        		{
        		PORTC |= hi;			// Set source bit
				TCNT1 = 0;
				while(TCNT1L < pulse_width) ;	//kill time
		        PORTC &= ~hi;			// Restore old value
        		}
     		else						// LOW TRUE pulse
        		{
	        	PORTC &= ~hi;			// Clear source bit
				TCNT1 = 0;
				while(TCNT1L < pulse_width) ;	//kill time
		        PORTC |= hi;			// Restore old value
        		}
		    HTM = 0;
			TCNT1 = 0;     
			while(TCNT1 < DEADTIME) ;	// Wait to settle noise
			if(cmd == PULSE2RTIME)
			    mark_on_rise(lo);		// Store counters at rising of dst
			else
			    mark_on_fall(lo);		// Store counters at falling of dst

		    break;

//-----------------------Digital I/O functions-------------------------
	     case DIGOUT:
     		PORTC = (dbuffer[1] << 4) | 3;   // Only PCO & PC1 need to be pulled up
		    break;

	     case DIGIN:			// 3 bits of PortC, 4th is analog comparator output
	        ADMUX = 5;					// SENSOR output is on ADC input 5		
   			SFIOR = (1 << ACME);	 	// Route ADC input to AIN-
	        ADCSRA = 0;					// Disable ADC
     		dbuffer[buf_index++] = (PINC & 7) | ((ACSR & (1<<ACO))>>2);
     		break;

	     case WREEPROM:
			tmp16 = dbuffer[2] << 8;	// 16 bit Internal SEEPROM address by
		    tmp16 |= dbuffer[1];		// combining low and high bytes
			eeprom_write_byte ( (u8ptr)tmp16, dbuffer[3]);
	        break;

	     case RDEEPROM:
			tmp16 = dbuffer[2] << 8;	// 16 bit Internal SEEPROM address by
		    tmp16 |= dbuffer[1];		// combining low and high bytes
			ch = dbuffer[3];
			for(lo=0; lo < ch; ++lo)
				dbuffer[buf_index++] = eeprom_read_byte ((u8ptr)(tmp16+lo));
	        break;

//----------------------- Low level PORT access functions----------------
	     case SETDDR:
      		if(dbuffer[1] == 0) DDRA = dbuffer[2];
      		else if(dbuffer[1] == 1) DDRB = dbuffer[2];
		    else if(dbuffer[1] == 2) DDRC = dbuffer[2];
      		else if(dbuffer[1] == 3) DDRD = dbuffer[2];
		    break;

	     case SETPORT:
      		if(dbuffer[1] == 0) PORTA = dbuffer[2];
      		else if(dbuffer[1] == 1) PORTB = dbuffer[2];
      		else if(dbuffer[1] == 2) PORTC = dbuffer[2];
      		else if(dbuffer[1] == 3) PORTD = dbuffer[2];
      		break;
	     
		 case GETPORT:
      		if(dbuffer[1] == 0) dbuffer[buf_index++] = PINA;
      		else if(dbuffer[1] == 1) dbuffer[buf_index++] = PINB;
      		else if(dbuffer[1] == 2) dbuffer[buf_index++] = PINC;
      		else if(dbuffer[1] == 3) dbuffer[buf_index++] = PIND;
      		break;

		 case GETVERSION:
      		memcpy_P(&dbuffer[1], version,5);
      		buf_index += 5;
      		break;

    	 default:
      		dbuffer[0] = INVCMD;		// Invalid Command
      		break;	
         }

   	  while( !(UCSRA & (1 <<UDRE) ) );
      UDR = dbuffer[0];					// Send the response byte in all cases
	  // If no error, send the data bytes to the PC. No handshake used.
	  if(dbuffer[0] == 'D')
	 	 for(tmp16=1; tmp16 < buf_index; ++tmp16)	
      		{
    		while( !(UCSRA & (1 <<UDRE) ) );
    		UDR = dbuffer[tmp16];
			}
      buf_index = 0;
	  //PORTC &= ~32;		used for trouble shooting only
      }
    }
return 0;
}