/usr/share/dx/java/htmlpages/AutoInsurance.html is in dxsamples 4.4.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | <html><head>
<meta http-equiv="content-type" content="text/html;charset=iso-8859-1">
<title>Open Visualization Data Explorer: Auto Insurance Claims</title>
</head>
<body bgcolor="white">
<h2><img src="javadx-smhd.gif" alt="Java Explorer" height="60" width="240" border="0"></h2>
<hr>
<h2>Auto Insurance Claims</h2>
<table border = 0>
<tr bgcolor="white">
<td>
<!-- It is required that codebase and archive applet tags be identical
within the html page for both control panels and image windows. If not, then
separate class loaders will be instantiated for the separate applets, and
the DXappplication will not be able to communicate with the image windows.
This manifests itself as any rendered images popping up in a separate
browser window.
-->
<APPLET
CODE="imageWindow.class" WIDTH = 820 HEIGHT = 251
CODEBASE="../"
ARCHIVE="htmlpages/dx.jar,htmlpages/samples.jar"
MAYSCRIPT
>
<PARAM NAME=IMAGE_NODE VALUE="Image_1">
<PARAM NAME=INITIAL_IMAGE VALUE="htmlpages/AutoInsurance1.0.0.gif">
</APPLET>
</td>
</tr>
<tr>
<td>
<APPLET
CODE="CaptionLabels.class" WIDTH = 820 HEIGHT = 25
CODEBASE="../"
ARCHIVE="htmlpages/dx.jar,htmlpages/samples.jar"
MAYSCRIPT
>
<!-- <param name=cabbase value="htmlpages/dx.cab"> -->
<PARAM NAME=DXLOutput0 VALUE="DXLOutput_1">
<PARAM NAME=BACKGROUND VALUE="[1.0, 1.0, 1.0]">
<PARAM NAME=FOREGROUND VALUE="[0.0, 0.0, 0.0]">
<param name=FONT value="TimesRoman-italic-24">
</APPLET>
</td>
</tr>
</table>
<br>
<table border=0>
<tr>
<td>
<APPLET
CODE="AutoInsurance.class" width = 440 height = 350
CODEBASE="../"
ARCHIVE="htmlpages/dx.jar,htmlpages/samples.jar"
MAYSCRIPT
>
<PARAM NAME="name" VALUE="AutoInsurance">
<!-- <PARAM NAME=cabbase VALUE="dx.cab"> -->
<PARAM NAME=NETNAME VALUE="AutoInsurance.net">
<PARAM NAME=DXUIVERS VALUE="4.3.3">
<PARAM NAME=BACKGROUND VALUE="[1.0, 1.0, 1.0]">
</APPLET>
</td>
<td>
<APPLET
CODE="imageWindow.class" WIDTH = 432 HEIGHT = 141
CODEBASE="../"
ARCHIVE="htmlpages/dx.jar,htmlpages/samples.jar"
MAYSCRIPT
>
<!-- <PARAM NAME=cabbase VALUE="dx.cab"> -->
<PARAM NAME=IMAGE_NODE VALUE="Image_2">
<PARAM NAME=INITIAL_IMAGE VALUE="htmlpages/AutoInsurance2.0.0.gif">
</APPLET>
<h3>...about the visualization</h3>
This visual program shows car insurance claim information
projected onto a map using zip codes. Height and color of
each glyph corresponds to statistics on three available claim
items: VehicleAge, Claim, and AnnualMileage. The available
statistics are mean, standard deviation, max, and count
(the number of claims in the region).
</td>
</tr>
</table>
<h3>...about the visual program</h3>
Also shown is a bounding box of all the zip codes,
which indicates claims in NY and CA - making it clear
that not all the claims come from addresses within Texas
(as might be assumed when mining the data). This use of
data visualization to provide an interactive spatial view
of raw data with local aggregation is valuable both for
understanding the raw data prior to mining and for discovering
trends within the data itself.
<h3>...about clustering</h3>
The data may be shown by individual zip code or based on
the local aggregation of values. This helps, for example,
in downtown regions where many zip codes are clustered
together. AggregateSize specifies the bin size (in degrees)
of an imaginary grid overlaying the map, and data for all
zip codes in each bin will be gathered together before
calculating statistics. If AggregateSize is 0, individual
zip codes will be used.
<p>
Another method for clustering is available using the K Means
algorithm, which uses spatial information to recognize a user
specified number of clusters. This algorithm takes longer to
execute since it requires looping numerous times, but once the
clusters have been created the algorithm need not be re-run as
the user changes displayed statistics. Note that the entire
algorithm is implemented as a macro in the visual program and
no C code was required.
<h3>...about the web page</h3>
In the <i>Execution</i> control panel, select <i>Pick</i> mode.
Picking on a glyph will produce a caption showing its numeric
values, including the zip code, which may be the average zip
code in the bin if it encompasses more than one.
<p>
<div align="center">
<hr>
<b> [
<a href="Status.html">Java Explorer</a> |
<a href="http://www.opendx.org/">OpenDX home page</a> | <a href="http://www.opendx.org/support.html">Help</a> ] </b></div>
</body>
</html>
|