This file is indexed.

/usr/include/cppad/local/sub_op.hpp is in cppad 2014.00.00.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/* $Id: sub_op.hpp 2910 2013-10-07 13:27:58Z bradbell $ */
# ifndef CPPAD_SUB_OP_INCLUDED
# define CPPAD_SUB_OP_INCLUDED

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-13 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the 
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */

namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\defgroup sub_op_hpp sub_op.hpp
\{
\file sub_op.hpp
Forward and reverse mode calculations for z = x - y.
*/

// --------------------------- Subvv -----------------------------------------
/*!
Compute forward mode Taylor coefficients for result of op = SubvvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where both x and y are variables
and the argument \a parameter is not used.

\copydetails forward_binary_op
*/

template <class Base>
inline void forward_subvv_op(
	size_t        q           , 
	size_t        p           , 
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	Base*         taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubvvOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubvvOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < i_z );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < i_z );
	CPPAD_ASSERT_UNKNOWN( p < nc_taylor );
	CPPAD_ASSERT_UNKNOWN( q <= p );

	// Taylor coefficients corresponding to arguments and result
	Base* x = taylor + arg[0] * nc_taylor;
	Base* y = taylor + arg[1] * nc_taylor;
	Base* z = taylor + i_z    * nc_taylor;

	for(size_t d = q; d <= p; d++)
		z[d] = x[d] - y[d];
}

/*!
Compute zero order forward mode Taylor coefficients for result of op = SubvvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where both x and y are variables
and the argument \a parameter is not used.

\copydetails forward_binary_op_0
*/

template <class Base>
inline void forward_subvv_op_0(
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	Base*         taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubvvOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubvvOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < i_z );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < i_z );

	// Taylor coefficients corresponding to arguments and result
	Base* x = taylor + arg[0] * nc_taylor;
	Base* y = taylor + arg[1] * nc_taylor;
	Base* z = taylor + i_z    * nc_taylor;

	z[0] = x[0] - y[0];
}

/*!
Compute reverse mode partial derivatives for result of op = SubvvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where both x and y are variables
and the argument \a parameter is not used.

\copydetails reverse_binary_op
*/

template <class Base>
inline void reverse_subvv_op(
	size_t        d           , 
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	const Base*   taylor      ,
	size_t        nc_partial  ,
	Base*         partial     )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubvvOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubvvOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < i_z );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < i_z );
	CPPAD_ASSERT_UNKNOWN( d < nc_taylor );
	CPPAD_ASSERT_UNKNOWN( d < nc_partial );

	// Partial derivatives corresponding to arguments and result
	Base* px = partial + arg[0] * nc_partial;
	Base* py = partial + arg[1] * nc_partial;
	Base* pz = partial + i_z    * nc_partial;

	// number of indices to access
	size_t i = d + 1;
	while(i)
	{	--i;
		px[i] += pz[i];
		py[i] -= pz[i];
	}
}

// --------------------------- Subpv -----------------------------------------
/*!
Compute forward mode Taylor coefficients for result of op = SubpvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where x is a parameter and y is a variable.

\copydetails forward_binary_op
*/

template <class Base>
inline void forward_subpv_op(
	size_t        q           , 
	size_t        p           , 
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	Base*         taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubpvOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubpvOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < i_z );
	CPPAD_ASSERT_UNKNOWN( p < nc_taylor );
	CPPAD_ASSERT_UNKNOWN( q <= p );

	// Taylor coefficients corresponding to arguments and result
	Base* y = taylor + arg[1] * nc_taylor;
	Base* z = taylor + i_z    * nc_taylor;

	// Paraemter value
	Base x = parameter[ arg[0] ];
	if( q == 0 )
	{	z[0] = x - y[0];
		q++;
	}
	for(size_t d = q; d <= p; d++)
		z[d] = - y[d];
}
/*!
Compute zero order forward mode Taylor coefficient for result of op = SubpvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where x is a parameter and y is a variable.

\copydetails forward_binary_op_0
*/

template <class Base>
inline void forward_subpv_op_0(
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	Base*         taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubpvOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubpvOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < i_z );

	// Paraemter value
	Base x = parameter[ arg[0] ];

	// Taylor coefficients corresponding to arguments and result
	Base* y = taylor + arg[1] * nc_taylor;
	Base* z = taylor + i_z    * nc_taylor;

	z[0] = x - y[0];
}

/*!
Compute reverse mode partial derivative for result of op = SubpvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where x is a parameter and y is a variable.

\copydetails reverse_binary_op
*/

template <class Base>
inline void reverse_subpv_op(
	size_t        d           , 
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	const Base*   taylor      ,
	size_t        nc_partial  ,
	Base*         partial     )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubvvOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubvvOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < i_z );
	CPPAD_ASSERT_UNKNOWN( d < nc_taylor );
	CPPAD_ASSERT_UNKNOWN( d < nc_partial );

	// Partial derivatives corresponding to arguments and result
	Base* py = partial + arg[1] * nc_partial;
	Base* pz = partial + i_z    * nc_partial;

	// number of indices to access
	size_t i = d + 1;
	while(i)
	{	--i;
		py[i] -= pz[i];
	}
}

// --------------------------- Subvp -----------------------------------------
/*!
Compute forward mode Taylor coefficients for result of op = SubvvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where x is a variable and y is a parameter.

\copydetails forward_binary_op
*/

template <class Base>
inline void forward_subvp_op(
	size_t        q           , 
	size_t        p           , 
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	Base*         taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubvpOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubvpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < i_z );
	CPPAD_ASSERT_UNKNOWN( p < nc_taylor );
	CPPAD_ASSERT_UNKNOWN( q <= p );

	// Taylor coefficients corresponding to arguments and result
	Base* x = taylor + arg[0] * nc_taylor;
	Base* z = taylor + i_z    * nc_taylor;

	// Parameter value
	Base y = parameter[ arg[1] ];
	if( q == 0 )
	{	z[0] = x[0] - y;
		q++;
	}
	for(size_t d = q; d <= p; d++)
		z[d] = x[d];
}

/*!
Compute zero order forward mode Taylor coefficients for result of op = SubvvOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where x is a variable and y is a parameter.

\copydetails forward_binary_op_0
*/

template <class Base>
inline void forward_subvp_op_0(
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	Base*         taylor      )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubvpOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubvpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < i_z );

	// Parameter value
	Base y = parameter[ arg[1] ];

	// Taylor coefficients corresponding to arguments and result
	Base* x = taylor + arg[0] * nc_taylor;
	Base* z = taylor + i_z    * nc_taylor;

	z[0] = x[0] - y;
}

/*!
Compute reverse mode partial derivative for result of op = SubvpOp.

The C++ source code corresponding to this operation is
\verbatim
	z = x - y
\endverbatim
In the documentation below,
this operations is for the case where x is a variable and y is a parameter.

\copydetails reverse_binary_op
*/

template <class Base>
inline void reverse_subvp_op(
	size_t        d           , 
	size_t        i_z         ,
	const addr_t* arg         ,
	const Base*   parameter   ,
	size_t        nc_taylor   ,
	const Base*   taylor      ,
	size_t        nc_partial  ,
	Base*         partial     )
{
	// check assumptions
	CPPAD_ASSERT_UNKNOWN( NumArg(SubvpOp) == 2 );
	CPPAD_ASSERT_UNKNOWN( NumRes(SubvpOp) == 1 );
	CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < i_z );
	CPPAD_ASSERT_UNKNOWN( d < nc_taylor );
	CPPAD_ASSERT_UNKNOWN( d < nc_partial );

	// Partial derivatives corresponding to arguments and result
	Base* px = partial + arg[0] * nc_partial;
	Base* pz = partial + i_z    * nc_partial;

	// number of indices to access
	size_t i = d + 1;
	while(i)
	{	--i;
		px[i] += pz[i];
	}
}

/*! \} */
} // END_CPPAD_NAMESPACE
# endif