This file is indexed.

/usr/include/cppad/local/sparse_pack.hpp is in cppad 2014.00.00.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// $Id: sparse_pack.hpp 2910 2013-10-07 13:27:58Z bradbell $
# ifndef CPPAD_SPARSE_PACK_INCLUDED
# define CPPAD_SPARSE_PACK_INCLUDED

/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-12 Bradley M. Bell

CppAD is distributed under multiple licenses. This distribution is under
the terms of the 
                    GNU General Public License Version 3.

A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
# include <cppad/local/cppad_assert.hpp>
# include <cppad/local/pod_vector.hpp>

namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\defgroup sparse_pack_hpp sparse_pack.hpp
\{
\file sparse_pack.hpp
Vector of sets of positive integers stored as a packed array of bools.
*/

/*!
Vector of sets of postivie integers, each set stored as a packed boolean array.
*/

class sparse_pack {
private:
	/// Type used to pack elements (should be the same as corresponding
	/// typedef in multiple_n_bit() in test_more/sparse_hacobian.cpp)
	typedef size_t Pack;
	/// Number of bits per Pack value
	static const size_t n_bit_ = std::numeric_limits<Pack>::digits;
	/// Number of sets that we are representing 
	/// (set by constructor and resize).
	size_t n_set_;
	/// Possible elements in each set are 0, 1, ..., end_ - 1
	/// (set by constructor and resize).
	size_t end_;
	/// Number of \c Pack values necessary to represent \c end_ bits.
	/// (set by constructor and resize).
	size_t n_pack_;
	/// Data for all the sets.
	pod_vector<Pack>  data_;
	/// index for which we were retrieving next_element
	/// (use n_set_ if no such index exists).
	size_t next_index_;
	/// Next element to start search at 
	/// (use end_ for no such element exists; i.e., past end of the set).
	size_t next_element_;
public:
	// -----------------------------------------------------------------
	/*! Default constructor (no sets)
	*/
	sparse_pack(void) : 
	n_set_(0)                     , 
	end_(0)                       , 
	n_pack_(0)                    ,
	next_index_(0)                ,
	next_element_(0)
	{ }
	// -----------------------------------------------------------------
	/*! Make use of copy constructor an error
 
	\param v
	vector that we are attempting to make a copy of.
 	*/
	sparse_pack(const sparse_pack& v)
	{	// Error: 
		// Probably a sparse_pack argument has been passed by value
		CPPAD_ASSERT_UNKNOWN(0); 
	}
	// -----------------------------------------------------------------
	/*! Destructor 
	*/
	~sparse_pack(void)
	{ }
	// -----------------------------------------------------------------
	/*! Change number of sets, set end, and initialize all sets as empty

	If \c n_set_in is zero, any memory currently allocated for this object 
	is freed. Otherwise, new memory may be allocated for the sets (if needed).

	\param n_set_in
	is the number of sets in this vector of sets.

	\param end_in
	is the maximum element plus one (the minimum element is 0).
	*/
	void resize(size_t n_set_in, size_t end_in) 
	{
		n_set_          = n_set_in;
		end_            = end_in;
		if( n_set_ == 0 )
		{	data_.free();
			return;
		}
		// now start a new vector with empty sets
		Pack zero(0);
		data_.erase();

		n_pack_         = ( 1 + (end_ - 1) / n_bit_ );
		size_t i        = n_set_ * n_pack_;

		if( i > 0 )
		{	data_.extend(i);
			while(i--)
				data_[i] = zero;
		}

		// values that signify past end of list
		next_index_   = n_set_;
		next_element_ = end_;
	}
	// -----------------------------------------------------------------
	/*! Add one element to a set.

	\param index
	is the index for this set in the vector of sets.

	\param element
	is the element we are adding to the set.

	\par Checked Assertions
	\li index    < n_set_
	\li element  < end_
	*/
	void add_element(size_t index, size_t element)
	{	static Pack one(1);
		CPPAD_ASSERT_UNKNOWN( index   < n_set_ );
		CPPAD_ASSERT_UNKNOWN( element < end_ );
		size_t j  = element / n_bit_;
		size_t k  = element - j * n_bit_;
		Pack mask = one << k;
		data_[ index * n_pack_ + j] |= mask;
	}
	// -----------------------------------------------------------------
	/*! Is an element of a set.

	\param index
	is the index for this set in the vector of sets.

	\param element
	is the element we are checking to see if it is in the set.

	\par Checked Assertions
	\li index    < n_set_
	\li element  < end_
	*/
	bool is_element(size_t index, size_t element)
	{	static Pack one(1);
		static Pack zero(0);
		CPPAD_ASSERT_UNKNOWN( index   < n_set_ );
		CPPAD_ASSERT_UNKNOWN( element < end_ );
		size_t j  = element / n_bit_;
		size_t k  = element - j * n_bit_;
		Pack mask = one << k;
		return (data_[ index * n_pack_ + j] & mask) != zero;
	}
	// -----------------------------------------------------------------
	/*! Begin retrieving elements from one of the sets.
	
	\param index
	is the index for the set that is going to be retrieved.
	The elements of the set are retrieved in increasing order.

	\par Checked Assertions
	\li index  < n_set_
	*/
	void begin(size_t index)
	{	// initialize element to search for in this set
		CPPAD_ASSERT_UNKNOWN( index < n_set_ );
		next_index_   = index;
		next_element_ = 0; 
	}
	/*! Get the next element from the current retrieval set.
	
	\return
	is the next element in the set with index
	specified by the previous call to \c begin.
	If no such element exists, \c this->end() is returned.
	*/
	size_t next_element(void)
	{	static Pack one(1);
		CPPAD_ASSERT_UNKNOWN( next_index_ < n_set_ );
		CPPAD_ASSERT_UNKNOWN( next_element_ <= end_ );

		if( next_element_ == end_ )
			return end_;

		// initialize packed data index
		size_t j  = next_element_ / n_bit_;

		// initialize bit index
		size_t k  = next_element_ - j * n_bit_;

		// start search at this packed value
		Pack check = data_[ next_index_ * n_pack_ + j ];
		while( true )
		{	// increment next element before checking this one
			next_element_++;
			// check if this element is in the set
			if( check & (one << k) )
				return next_element_ - 1;
			// check if no more elements in the set
			if( next_element_ == end_ )
				return end_;
			// increment bit index in Pack value so corresponds to 
			// next element
			k++;
			CPPAD_ASSERT_UNKNOWN( k <= n_bit_ );
			if( k == n_bit_ )
			{	// get next packed value
				k     = 0;
				j++;
				CPPAD_ASSERT_UNKNOWN( j < n_pack_ );
				check = data_[ next_index_ * n_pack_ + j ];
			}
		}
		// should never get here
		CPPAD_ASSERT_UNKNOWN(false);
		return end_;
	}
	// -----------------------------------------------------------------
	/*! Assign the empty set to one of the sets.

	\param target
	is the index of the set we are setting to the empty set.

	\par Checked Assertions
	\li target < n_set_
	*/
	void clear(size_t target)
	{	// value with all its bits set to false
		static Pack zero(0);
		CPPAD_ASSERT_UNKNOWN( target < n_set_ );
		size_t t = target * n_pack_;

		size_t j = n_pack_;
		while(j--)
			data_[t++] = zero;
	}
	// -----------------------------------------------------------------
	/*! Assign one set equal to another set.

	\param this_target
	is the index (in this \c sparse_pack object) of the set being assinged.

	\param other_value
	is the index (in the other \c sparse_pack object) of the 
	that we are using as the value to assign to the target set.

	\param other
	is the other \c sparse_pack object (which may be the same as this
	\c sparse_pack object).

	\par Checked Assertions
	\li this_target  < n_set_
	\li other_value  < other.n_set_
	\li n_pack_     == other.n_pack_ 
	*/
	void assignment(
		size_t               this_target  , 
		size_t               other_value  , 
		const sparse_pack&   other        )
	{	CPPAD_ASSERT_UNKNOWN( this_target  <   n_set_        );
		CPPAD_ASSERT_UNKNOWN( other_value  <   other.n_set_  );
		CPPAD_ASSERT_UNKNOWN( n_pack_      ==  other.n_pack_ );
		size_t t = this_target * n_pack_;
		size_t v = other_value * n_pack_;

		size_t j = n_pack_;
		while(j--)
			data_[t++] = other.data_[v++];
	}

	// -----------------------------------------------------------------
	/*! Assing a set equal to the union of two other sets.

	\param this_target
	is the index (in this \c sparse_pack object) of the set being assinged.

	\param this_left
	is the index (in this \c sparse_pack object) of the 
	left operand for the union operation.
	It is OK for \a this_target and \a this_left to be the same value.

	\param other_right
	is the index (in the other \c sparse_pack object) of the 
	right operand for the union operation.
	It is OK for \a this_target and \a other_right to be the same value.

	\param other
	is the other \c sparse_pack object (which may be the same as this
	\c sparse_pack object).

	\par Checked Assertions
	\li this_target <  n_set_
	\li this_left   <  n_set_
	\li other_right <  other.n_set_
	\li n_pack_     == other.n_pack_ 
	*/
	void binary_union(
		size_t                  this_target  , 
		size_t                  this_left    , 
		size_t                  other_right  , 
		const sparse_pack&      other        )
	{	CPPAD_ASSERT_UNKNOWN( this_target < n_set_         );
		CPPAD_ASSERT_UNKNOWN( this_left   < n_set_         );
		CPPAD_ASSERT_UNKNOWN( other_right < other.n_set_   );
		CPPAD_ASSERT_UNKNOWN( n_pack_    ==  other.n_pack_ );

		size_t t = this_target * n_pack_;
		size_t l  = this_left  * n_pack_;
		size_t r  = other_right * n_pack_;

		size_t j = n_pack_;
		while(j--)
			data_[t++] = ( data_[l++] | other.data_[r++] );
	}
	// -----------------------------------------------------------------
	/*! Amount of memory used by this vector of sets
 
	\return
	The amount of memory in units of type unsigned char memory.
 	*/
	size_t memory(void) const
	{	return n_set_ * n_pack_ * sizeof(Pack);
	}
	// -----------------------------------------------------------------
	/*! Fetch n_set for vector of sets object.
	
	\return
	Number of from sets for this vector of sets object
	*/
	size_t n_set(void) const
	{	return n_set_; }
	// -----------------------------------------------------------------
	/*! Fetch end for this vector of sets object. 
	
	\return
	is the maximum element value plus one (the minimum element value is 0).
	*/
	size_t end(void) const
	{	return end_; }
};

/*! 
Copy a user vector of bools sparsity pattern to an internal sparse_pack object.

\tparam VectorBool
is a simple vector with elements of type bool.

\param internal
The input value of sparisty does not matter.
Upon return it contains the same sparsity pattern as \c user
(or the transposed sparsity pattern).

\param user
sparsity pattern that we are placing \c internal.

\param n_row
number of rows in the sparsity pattern in \c user
(rand dimension).

\param n_col
number of columns in the sparsity pattern in \c user
(domain dimension).

\param transpose
if true, the sparsity pattern in \c internal is the transpose
of the one in \c user. 
Otherwise it is the same sparsity pattern.
*/
template<class VectorBool>
void sparsity_user2internal(
	sparse_pack&       internal  , 
	const VectorBool&  user      ,
	size_t             n_row     ,
	size_t             n_col     ,
	bool               transpose )
{	CPPAD_ASSERT_UNKNOWN( n_row * n_col == size_t(user.size()) );
	size_t i, j;

	CPPAD_ASSERT_KNOWN(
		size_t( user.size() ) == n_row * n_col,
		"Size of this vector of bools sparsity pattern is not equal product "
		"of the domain and range dimensions for corresponding function."
	);

	// transposed pattern case
	if( transpose )
	{	internal.resize(n_col, n_row);
		for(j = 0; j < n_col; j++)
		{	for(i = 0; i < n_row; i++)
			{	if( user[ i * n_col + j ] )
					internal.add_element(j, i);
			}
		}
		return;
	}

	// same pattern case
	internal.resize(n_row, n_col);
	for(i = 0; i < n_row; i++)
	{	for(j = 0; j < n_col; j++)
		{	if( user[ i * n_col + j ] )
				internal.add_element(i, j);
		}
	}
	return;
}

/*! \} */
} // END_CPPAD_NAMESPACE
# endif