This file is indexed.

/usr/share/code_saturne/user/uslag2.f90 is in code-saturne-data 3.3.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
!-------------------------------------------------------------------------------

!                      Code_Saturne version 3.3.2
!                      --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2014 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.

!-------------------------------------------------------------------------------

subroutine uslag2 &
!================

 ( nvar   , nscal  ,                                              &
   nbpmax , nvp    , nvp1   , nvep   , nivep  ,                   &
   ntersl , nvlsta , nvisbr ,                                     &
   itypfb , itrifb , itepa  , ifrlag ,                            &
   dt     ,                                                       &
   ettp   , tepa   )

!===============================================================================
! Purpose:
! ----------

!   Subroutine of the Lagrangian particle-tracking module:
!   -------------------------------------

!    User subroutine (Mandatory intervention)

!    User subroutine for the boundary conditions associated to the particles
!    (inlet and treatment of the other boundaries)


! Boundary faces identification
! =============================

! Boundary faces may be identified using the 'getfbr' subroutine.
! The syntax of this subroutine is described in the
! 'cs_user_boundary_conditions' subroutine,
! but a more thorough description can be found in the user guide.


!-------------------------------------------------------------------------------
! Arguments
!__________________.____._____.________________________________________________.
! name             !type!mode ! role                                           !
!__________________!____!_____!________________________________________________!
! nvar             ! i  ! <-- ! total number of variables                      !
! nscal            ! i  ! <-- ! total number of scalars                        !
! nbpmax           ! i  ! <-- ! maximum number of particles allowed            !
! nvp              ! i  ! <-- ! number of particle variables                   !
! nvp1             ! i  ! <-- ! nvp minus position, fluid and part. velocities !
! nvep             ! i  ! <-- ! number of particle properties (integer)        !
! nivep            ! i  ! <-- ! number of particle properties (integer)        !
! ntersl           ! i  ! <-- ! number of source terms of return coupling      !
! nvlsta           ! i  ! <-- ! nb of Lagrangian statistical variables         !
! nvisbr           ! i  ! <-- ! number of boundary statistics                  !
! itrifb(nfabor)   ! ia ! <-- ! indirection for the sorting of the             !
! itypfb(nfabor)   ! ia ! <-- ! type of the boundary faces                     !
! ifrlag(nfabor    ! ia ! --> ! type of the Lagrangian boundary faces          !
! itepa            ! ia ! <-- ! particle information (integers)                !
! (nbpmax,nivep    !    !     !                                                !
! dt(ncelet)       ! ra ! <-- ! time step (per cell)                           !
! ettp             ! ra ! <-- ! array of the variables associated to           !
!  (nbpmax,nvp)    !    !     ! the particles at the current time step         !
! tepa             ! ra ! <-- ! particle information (real) (statis. weight..) !
! (nbpmax,nvep)    !    !     !                                                !
!__________________!____!_____!________________________________________________!

!     Type: i (integer), r (real), s (string), a (array), l (logical),
!           and composite types (ex: ra real array)
!     mode: <-- input, --> output, <-> modifies data, --- work array
!===============================================================================

!===============================================================================
! Module files
!===============================================================================

use paramx
use numvar
use optcal
use cstnum
use cstphy
use entsor
use lagpar
use lagran
use ppppar
use ppthch
use cpincl
use ihmpre
use mesh

!===============================================================================

implicit none

! Arguments

integer          nvar   , nscal
integer          nbpmax , nvp    , nvp1   , nvep  , nivep
integer          ntersl , nvlsta , nvisbr

integer          itypfb(nfabor) , itrifb(nfabor)
integer          itepa(nbpmax,nivep) , ifrlag(nfabor)

double precision dt(ncelet)
double precision ettp(nbpmax,nvp) , tepa(nbpmax,nvep)

! Local variables

integer          ifac , izone, nbclas, iclas
integer          icoal , ilayer
integer          ilelt, nlelt

double precision pis6 , mp0 , temp

integer, dimension(ndlaim) :: iczpar
double precision, dimension(ndlagm) :: rczpar

integer, allocatable, dimension(:) :: lstelt

!===============================================================================



!===============================================================================
! 1.  Memory management
!===============================================================================

! Allocate a temporary array for boundary faces selection
allocate(lstelt(nfabor))


!===============================================================================
! 2. Initialization
!===============================================================================

pis6 = pi / 6.d0

!===============================================================================
! 3. Construction of the boundary zones
!===============================================================================


!     Definition of the boundary zones
!     --------------------------------

!     For the Lagrangian module, the user defines nfrlag boundary zones
!     from the color of the boundary faces, or more generally from their
!     properties (colors, groups..) or from the boundary conditions prescribed
!     in cs_user_boundary_conditions, or even from their coordinates. To do
!     that, we fill the ifrlag(nfabor) array which gives for every boundary
!     face the number of the zone to which it belongs ifrlag(ifac)
!
!     Be careful, all the boundary faces must have been assigned.
!
!     The number of the zones (thus the values of ifrlag(ifac)) is arbitrarily
!     chosen by the user, but must be a positive integer and inferior or equal
!     to nflagm (parameter prescribed in lagpar.h).
!
!     Afterwards, we assign to every zone a type named itylag that will be used
!     to impose global boundary conditions.

izone = -1

! ---> First zone numbered izone=1 ( = color 10)
call getfbr('10',nlelt,lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  izone        = 1
  ifrlag(ifac) = izone

enddo

! ---> Second zone numbered izone=2 ( = part of color 4)
call getfbr('4 and y < 1.0',nlelt,lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  izone        = 2
  ifrlag(ifac) = izone

enddo

! ---> Third zone numbered izone=3 ( = inlet)
do ifac = 1, nfabor
  if(itypfb(ifac).eq.ientre) then
    izone        = 4
    ifrlag(ifac) = izone
  endif
enddo

! ---> Nth zone numbered izone=5 (= color 3)
call getfbr('3',nlelt,lstelt)
!==========

do ilelt = 1, nlelt

  ifac = lstelt(ilelt)

  izone        = 5
  ifrlag(ifac) = izone

enddo


!===============================================================================
! 4. Injection per particle class into the calculation domain
!===============================================================================

!   TO PROVIDE INFORMATION ABOUT THE PARTICLE CLASSES,
!   WE FOLLOW A TWO-STEP PROCEDURE:

!   1) FIRST, THE NUMBER OF PARTICLE CLASSES IS PRESCRIBED
!      FOR EACH BOUNDARY ZONE: IUSNCL (by default, this parameter is equal to zero)

!   2) AFTERWARDS, FOR EACH ZONE AND FOR EACH CLASS, WE PRESCRIBE
!      THE PHYSICAL PROPERTIES OF THE PARTICLES
!




! --> Number of particle classes entering the domain
!   We assign here the number of classes for each zone previously identified.
!
!   This number is zero by default.
!   The maximal number of classes is nclagm (defined in lagpar.h)

! ---> First zone numbered izone = 1: 1 class injected
izone     = 1
nbclas    = 1
iusncl(izone) = nbclas

! ---> Second zone numbered izone = 2: 0 class injected
izone     = 2
nbclas    = 0
iusncl(izone) = nbclas

! ---> Third zone numbered izone = 4 : 0 class injected
izone     = 4
nbclas    = 0
iusncl(izone) = nbclas

! ---> Zone numbered izone = 5 : 0 class injected
izone     = 5
nbclas    = 0
iusncl(izone) = nbclas


! --> For every class associated with a zone,
!     we give the following information.


!     iusncl number of classes per zone
!     iusclb boundary conditions for the particles
!     = ientrl -> zone of particle inlet
!     = isortl -> particle outlet
!     = irebol -> rebound of the particles
!     = idepo1 -> definitive deposition
!     = idepo2 -> definitive deposition, but the particle remains in memory
!                 (useful only if iensi2 = 1)
!     = idepfa -> deposition of the particle with DLVO forces
!     = iencrl -> fouling (coal only iphyla = 2)
!     = isymtl -> symmetry condition for the particles (zero flux)

!     Array iczpar:
!     ============
!        ijnbp : number of particles per class and per zone
!        ijfre : injection frequency. If ijfre = 0, then the injection
!                occurs only at the first absolute iteration.
!        iclst : number of the group to which the particle belongs
!                (only if one wishes to calculate statistics per group)
!        ijuvw : type of condition on the velocity
!                  = -1 imposed flow velocity
!                  =  0 imposed velocity along the normal direction of the
!                      boundary face, with norm equal to rczpar(iuno)
!                  =  1 imposed velocity: we prescribe   rczpar(iupt)
!                                                        rczpar(ivpt)
!                                                        rczpar(iwpt)
!                  =  2 user-defined profile
!        ijprtp : type of temperature condition
!                  =  1 imposed temperature: we prescribe rczpar(itpt)
!                  =  2 user-defined profile
!        ijprdp : type of diameter condition
!                  =  1 imposed diameter: we prescribe  rczpar(idpt)
!                                                       rczpar(ivdpt)
!                  =  2 user-defined profile
!        ijprtp : type of temperature condition
!                  =  1 imposed temperature: we prescribe rczpar(itpt)
!                  =  2 user-defined profile
!        inuchl : number of the coal of the particle (only if iphyla = 2)
!        irawcl : type of coal injection composition (only if iphyla = 2)
!                  = 0 coal injected with an user-defined composition
!                  = 1 raw coal injection

!     Array rczpar:
!     ============
!        iuno  : Norm of the velocity (m/s)
!        iupt  : Velocity along the X axis, for each class and for each zone (m/s)
!        ivpt  : Velocity along the Y axis, for each class and for each zone (m/s)
!        iwpt  : Velocity along the Z axis, for each class and for each zone (m/s
!        ipoit : Statistical weight (number of samples) associated
!                to the particle (automatically computed to respect a mass
!                flow rate if it is defined)
!        idebt : Mass flow rate (kg/s)

!        Physical characteristics:
!          idpt   : diameter (m)
!          ivdpt  : standard deviation of the diameter (m)
!          iropt  : density (kg/m3)
!          itpt   : temperature in Celsius degress (no enthalpy)
!          icpt   : specific heat (J/kg/K)
!          iepsi  : emissivity (if =0 then no radiative effect is taken into account)

!         If coal (iphyla=2)
!            ihpt    : temperature in Kelvin degres (no enthalpy) (layer by layer)
!            ifrmwt  : mass fraction of moisture in the particle
!            ifrmch  : mass fraction of reactive coal in the particle (layer by layer)
!            ifrmck  : mass fraction of coke coal in the particle (layer by layer)
!            irdck   : coke diameter (m)
!            ird0p   : coal particle initial diameter (m)
!            irhock0 : density of coke at the end of the pyrolysis (kg/m³) (layer by layer)


! ---> EXAMPLE : First zone, numbered IZONE = 1 (NBCLAS classes)
!        IUSCLB : adherence of the particle to a boundary face
!        IJNBP  : 10 particles for each class,
!        IJFRE  : injection every other time step
!        IJUVW, IUPT, IVPT, IWPT : imposed velocity on 1.1D0, 0.0D0, 0.0D0
!        ICPT   : cp equal to 10000
!        ITPT   : temperature equal to 25 Celsius degress
!        IDPT   : diameter equal to 50.E-6 m
!        IEPSI  : emissivity equal to 0.7
!        IVDPT  : constant diameter ==> standard deviation null
!        IROPT  : density
!        IPOIT  : statistical weight (number of physical particles
!                 represented by one statistical particle)
!        IDEBT  : mass flow rate


izone         = 1
nbclas        = iusncl(izone)
iusclb(izone) =  ientrl

do iclas  = 1, nbclas

  ! Ensure defaults are set

  call lagr_init_zone_class_param(iczpar, rczpar)
  !==============================

  ! Now define parameters for this class and zone

  iczpar(ijnbp) = 10
  iczpar(ijfre) = 2

  if (nbclst.gt.0) then
    iczpar(iclst) = 1
  endif

  iczpar(ijuvw) = -1
  rczpar(iupt)  = 1.1d0
  rczpar(ivpt)  = 0.0d0
  rczpar(iwpt)  = 0.0d0
  iczpar(ijprpd)= 1
  rczpar(ipoit) = 1.d0
  rczpar(idebt) = 0.d0

  ! if the physics is " simple"

  if (iphyla.eq.0 .or. iphyla.eq.1) then

    ! Mean value and standard deviation of the diameter

    iczpar(ijprdp)= 1
    rczpar(idpt)  = 50.d-6
    rczpar(ivdpt) = 0.d0

    ! Density

    rczpar(iropt) = 2500.d0

    if (iphyla.eq.1) then

      ! Temperature and Cp

      if ( itpvar.eq.1 ) then
        iczpar(ijprtp) = 1
        rczpar(itpt)    = 20.d0

        rczpar(icpt)    = 1400.d0
        rczpar(iepsi)   = 0.7d0
      endif

    endif

    ! Coal

  else if ( iphyla.eq.2 ) then

    ! CAUTION :   1) To transport and burn coal particles with the Lagrangian
    !                module, a specific physics for the dispersed phase must
    !                be activated for the carrier phase.
    !
    !             2) The physical properties of the coal particles are known
    !                from the thermo-chemical file: dp_FCP
    !
    !             3) For the current phase ICLAS, and for the current boundary
    !                zone NB, we assign to the coal particles the properties of
    !                the coal ICOAL of the ICOAL class taken from the file dp_FCP.
    !
    !             4) icoal : number of the coal between 1 and ncharb defined by
    !                the user in the file dp_FCP.


    ! Mean value and standard deviation of the diameter

    rczpar(idpt)  = 1.0d-5
    rczpar(ivdpt) = 0.d0

    ! Number of the coal
    icoal = 1
    iczpar(inuchl) = icoal

    ! Temperature (in K)
    temp = 800.d0
    do ilayer = 1, nlayer
      rczpar(ihpt(ilayer)) = temp
    enddo

    ! Raw coal or user defined coal injection condition
    iczpar(irawcl) = 1

    if (iczpar(irawcl) .eq.  0) then
      ! Example of user-defined injection, coal after devolatilisation

      ! Density
      rczpar(iropt) = xashch(icoal)*rho0ch(icoal) +                          &
                      (1.0d0-xwatch(icoal)-xashch(icoal)) * rho0ch(icoal)    &
                       * (1.d0-(y1ch(icoal)+y2ch(icoal))/2.0d0)

      ! Specific heat
      rczpar(icpt) = cp2ch(icoal)

      ! water mass fraction in the particle
      rczpar(ifrmwt) = 0.0d0
      ! reactive coal mass fraction in the particle
      do ilayer = 1, nlayer
        rczpar(ifrmch(ilayer)) = 0.0d0
      enddo
      ! coke mass fraction in the particle
      do ilayer = 1, nlayer
        rczpar(ifrmck(ilayer)) = ((1.0d0-xwatch(icoal)-xashch(icoal))        &
                                   * rho0ch(icoal)                           &
                                   * (1.d0-(y1ch(icoal)+y2ch(icoal))/2.0d0)) &
                                  / rczpar(iropt)
      enddo

      ! coke diameter
      rczpar(irdck)   = rczpar(idpt)
      ! initial particle diameter
      rczpar(ird0p)   = rczpar(idpt)
      ! coke density after pyrolysis
      do ilayer = 1, nlayer
        rczpar(irhock0(ilayer)) = rczpar(iropt)*rczpar(ifrmck(ilayer))
      enddo
    endif

  endif

  ! Complete definition of parameters for this class and zone

  call lagr_define_zone_class_param(iclas, izone, iczpar, rczpar)
  !================================

enddo

! ---> Second zone, numbered izone = 2
!        IUSCLB : rebound of the particle

izone     = 2
iusclb (izone)         =  irebol


! same procedure for the other zones...

!===============================================================================

!--------
! Formats
!--------

!----
! End
!----

! Deallocate the temporary array
deallocate(lstelt)

return
end subroutine uslag2