/usr/share/code_saturne/user/uslag1.f90 is in code-saturne-data 3.3.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | !-------------------------------------------------------------------------------
! Code_Saturne version 3.3.2
! --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2014 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.
!-------------------------------------------------------------------------------
subroutine uslag1
!================
!===============================================================================
! Purpose:
! -------
! User subroutine of the Lagrangian particle-tracking module:
! User subroutine for input of calculation parameters (Fortran commons).
! This parameters concern physical, numerical and post-processing options.
!-------------------------------------------------------------------------------
! Arguments
!__________________.____._____.________________________________________________.
! name !type!mode ! role !
!__________________!____!_____!________________________________________________!
!__________________!____!_____!________________________________________________!
! Type: i (integer), r (real), s (string), a (array), l (logical),
! and composite types (ex: ra real array)
! mode: <-- input, --> output, <-> modifies data, --- work array
!===============================================================================
!===============================================================================
! Module files
!===============================================================================
use paramx
use entsor
use lagdim
use lagpar
use lagran
use ihmpre
!===============================================================================
implicit none
! Local variables
integer ii , ipv , icha
double precision sio2 , al2o3 , fe2o3 , cao
!===============================================================================
!===============================================================================
! 1. Particle-tracking mode
!===============================================================================
! iilagr = 0 : no particle tracking (default)
! = 1 : particle-tracking one-way coupling
! = 2 : particle-tracking two-way coupling
! = 3 : particle tracking on frozen field
! (this option requires a calculation restart isuite=1,
! all Eulerian fields are frozen (pressure, velocities,
! scalars). This option is stronger than iccvfg)
iilagr = 1
!===============================================================================
! 2. Particle-tracking calculation restart
!===============================================================================
! isuila = 0 : no restart (default)
! = 1 : restart (this value requires a restart on the continuous
! phase too, i.e. isuite = 1)
isuila = 0
! Restart on volume and boundary statistics, and two-way coupling terms;
! useful if isuila = 1 (defaul off: 0 ; on: 1)
if (isuila.eq.1) isuist = 0
!===============================================================================
! 3. Particle tracking: specific models
!===============================================================================
! iphyla = 0 : only transport modeling (default)
! = 1 : equation on temperature (in Celsius degrees), diameter or mass
! = 2 : pulverized coal combustion (only available if the continuous
! phase is a flame of pulverized coal)
iphyla = 0
! 3.1 equation on temperature, diameter or mass
if (iphyla.eq.1) then
! equation on diameter
! (default off: 0 ; on: 1)
idpvar = 0
! equation on temperature (in Celsius degrees)
! (default off: 0 ; on: 1)
! This option requires a thermal scalar for the continuous phase.
itpvar = 0
! equation on mass
! (default off: 0 ; on: 1)
impvar = 0
endif
! 3.2 coal fouling
! Reference internal reports EDF/R&D: HI-81/00/030/A and HI-81/01/033/A
! Evaluation of the probability for a particle to stick to a wall.
! This probability is the ratio of a critical viscosity on the
! viscosity of coal ashes
! visref
! P(Tp) = -------- for viscen >= visref
! viscen
! = 1 otherwise
! The expression of J.D. Watt and T.Fereday (J.Inst.Fuel-Vol42-p99)
! is used to evaluate the viscosity of the ashes
! Enc1 * 1.0d+7
! Log (10*viscen) = --------------- + Enc2
! 10 2
! (Tp(C) - 150)
! In literature, the range of the critical viscosity visref is between
! 8 Pa.s and 1.D7 Pa.s For general purpose 1.0D+4 Pa.s is chosen
if (iphyla.eq.2) then
! iencra = 0 no fouling (default)
! = 1 fouling
! * In uslag2.f90, the boundary on which the fouling can occur must be given
! * Post-processing: iensi3 = 1 and
! * iencnbbd = 1 / iencmabd = 1 / iencdibd = 1 /iencckbd = 1 (10.2)
iencra = 0
! Example of definition of fouling criteria for each coal
! first (and single) coal icha = 1
icha = 1
! tprenc : threshold temperature below which no fouling occurs
! (in degrees Celcius)
tprenc(icha) = 600.d0
! visref : critical viscosity (Pa.s)
visref(icha) = 10000.d0
! > coal composition in mineral matters:
! (with SiO2 + Al2O3 + Fe2O3 + CaO + MgO = 100% in mass)
sio2 = 36.0d0
al2o3 = 20.8d0
fe2o3 = 4.9d0
cao = 13.3d0
! Enc1 and Enc2 : coefficients in Watt and Fereday expression
enc1(icha) = 0.00835d0 * sio2 + 0.00601d0 * al2o3 - 0.109d0
enc2(icha) = 0.0415d0 * sio2 + 0.0192d0 * al2o3 &
+ 0.0276d0 * fe2o3 + 0.016 * cao - 3.92d0
endif
!===============================================================================
! 4. Number of particles allowed simultaneously inside the computational domain
!===============================================================================
! * Warning, memory is allocated with NBPMAX
nbpmax = 1000000
!===============================================================================
! 5. Calculation features for the dispersed phases
!===============================================================================
! 5.1 Additional variables
! ------------------------
! * these additional variables are stored in ettp and ettpa arrays
! * nvls is the number of additional variables
! * the upper limit is nusvar = 10 (fixed in block common lagpar.f90)
! * one access to additional variables in ettp ettpa using the pointer jvls:
! current step -> ettp(nbpt,jvls(nvus))
! previous step -> ettpa(nbpt,jvls(nvus))
! nbpt is the number of the considered particle
! (integer between 1 and nbpart),
! nvus is the number of the additional variable
! (integer between 1 and nvls),
! * the integration of the associated differential stochastic equation
! requires a user intervention in uslaed.f90 subroutine
nvls = 0
! 5.2 Stationary or unsteady continuous phase
! * if stationary: isttio = 1
! * if unsteady: isttio = 0
! * if iilagr = 3 then isttio = 1
! Remark: if isttio = 0, then the statistical averages are reset
! at each lagrangian iteration
if (iilagr.ne.3) isttio = 0
! 5.3 Two-way coupling: (iilagr = 2)
if (iilagr.eq.2) then
! * number of absolute lagrangian iteration (i.e. with restart)
! from which a time average for two-way coupling source terms is
! computed (stationary source terms)
! * if the Lagrangian iteration is lower than NSTITS, source terms are
! unstationary: they are reset at each lagrangian iteration
! * useful only if ISTTIO = 1.
! * the min value for NSTITS is 1
nstits = 1
! two-way coupling for dynamic (velocities and turbulent scalars)
! (default off: 0 ; on: 1)
! (useful if ICCVFG = 0)
ltsdyn = 0
! two-way coupling for mass (if IPHYLA = 1 and IMPVAR = 1)
! (default off: 0 ; on: 1)
if(iphyla.eq.1 .and. (impvar.eq.1 .or. idpvar.eq.1)) ltsmas = 0
! two-way coupling for thermal scalar
! (if iphyla = 1 and impvar = 1, or iphyla = 2)
! or for coal variables (if IPHYLA = 2)
! (default off: 0 ; on: 1)
if((iphyla.eq.1 .and. itpvar.eq.1) .or. iphyla.eq.2) ltsthe = 0
endif
! 5.4 Volume statistics
! ---------------------
! 5.4.1 Generic parameters
! ~~~~~~~~~~~~~~~~~~~~~~~~~
! Calculation of the volume statistics
! (default off: 0 ; on: 1)
istala = 0
if (istala.eq.1) then
! Threshold for the management of volume statistics
! -------------------------------------------------
! * the value of the seuil variable is a statistical weight.
! * each cell of the mesh contains a statistical weight
! (sum of the statistical weights of all the particles
! located in the cell); seuil is the minimal value from
! which the contribution in statistical weight of a particle
! is not taken into account anymore in the full model
! of turbulent dispersion, in the resolution of the
! Poisson equation of correction of the mean velocities, and
! in the writing of the listing and post-processing.
!
seuil = 0.d0
! Calculation of the volume statistics from the absolute number
! of Lagrangian iterations
! * idstnt is a absolute number of Lagrangian iterations
! (i.e. including calculation restarts)
idstnt = 1
! Steady calculation from the absolute Lagrangian iteration nstist
! * nstist is a absolute number of Lagrangian iterations
! (i.e. including calculation restarts) from which the statistics
! are averaged in time.
! * useful if the calculation is stationary (isttio=1)
! * if the number of Lagrangian iterations is lower than nstits,
! the transmitted source terms are unsteady (i.e. they are reset to
! zero ar each Lagrangian iteration)
! * the minimal value acceptable for nstist is 1.
nstist = idstnt
! 5.4.2 Volume statistical variables
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
! Activation of the calculation of the particle volume fraction
! Name of the mean : Part_vol_frac
iactfv = 1
! Activation of the calculation of the particle velocity x-component
! (mean and variance)
! Name of the mean: Part_velocity_X
! Name of the variance: var_Part_velocity_X
iactvx = 1
! Activation of the calculation of the particle velocity y-component
! (average and variance)
! Name of the mean: Part_velocity_Y
! Name of the variance: var_Part_velocity_Y
iactvy = 1
! Activation of the calculation of the particle velocity z-component
! (average and variance)
! Name of the mean: Part_velocity_Z
! Name of the variance: var_Part_velocity_Z
iactvz = 1
! Activation of the calculation of the particle residence time
! (mean and variance)
! Name of the mean: Part_resid_time
! Name of the variance: var_Part_resid_time
iactts = 1
! 2) Specific models (iphyla = 1) following the chosen options:
! Mean and variance of the temperature
! Mean and variance of the diameter
! Mean and variance of the mass
if (iphyla.eq.1) then
if (itpvar.eq.1) then
ipv = ipv + 1
nomlag(ipv) = 'MoTempPt'
nomlav(ipv) = 'VaTempPt'
ihslag(ipv) = 2
endif
if (idpvar.eq.1) then
ipv = ipv + 1
nomlag(ipv) = 'MoDiamPt'
nomlav(ipv) = 'VaDiamPt'
ihslag(ipv) = 2
endif
if (impvar.eq.1) then
ipv = ipv + 1
nomlag(ipv) = 'MoMassPt'
nomlav(ipv) = 'VaMassPt'
ihslag(ipv) = 2
endif
else if (iphyla.eq.2) then
! 3) Pulverized coal (iphyla = 2) :
! Mean and variance of the mass
! Mean and variance of the temperature
! Mean and variance of the water mass
! Mean and variance of the mass of reactive coal
! Mean and variance of the mass of coke
! Mean and variance of the diameter of the shrinking core
ipv = ipv + 1
nomlag(ipv) = 'Part_mass'
nomlav(ipv) = 'var_Part_mass'
ihslag(ipv) = 2
ipv = ipv + 1
nomlag(ipv) = 'Part_temperature'
nomlav(ipv) = 'var_Part_temperature'
ihslag(ipv) = 2
ipv = ipv + 1
nomlag(ipv) = 'Part_wat_mass'
nomlav(ipv) = 'var_Part_wat_mass'
ihslag(ipv) = 2
ipv = ipv + 1
nomlag(ipv) = 'Part_ch_mass'
nomlav(ipv) = 'var_Part_ch_mass'
ihslag(ipv) = 2
ipv = ipv + 1
nomlag(ipv) = 'Part_ck_mass'
nomlav(ipv) = 'var_Part_ck_mass'
ihslag(ipv) = 2
ipv = ipv + 1
nomlag(ipv) = 'Part_shrink_core_diam'
nomlav(ipv) = 'var_Part_shrink_core_diam'
ihslag(ipv) = 2
endif
! 4) Additional volume statistical variables
! ---------------------------------------
! * If the user wishes other statistic calculations
! than the standard ones, he must 1) prescribe
! their number nvlsts, 2) prescribe their names,
! 3) prescribe ihslag and 4) intervene in the
! user subroutines uslast and uslaen to implement
! his new statistics (see the given examples)
! * Default maximal number of additional statistics: 20.
! (Otherwise, modify the nussta parameter is the
! include file lagpar.f90)
nvlsts = 0
if (nvlsts.gt.0) then
do ii = 1,nvlsts
ilvu(ii) = ipv + ii
WRITE(NOMLAG(ILVU(II)),'(A6,I4.4)') 'MoyLag',II
WRITE(NOMLAV(ILVU(II)),'(A6,I4.4)') 'VarLag',II
ihslag(ilvu(ii)) = 1
enddo
ipv = ipv + nvlsts
endif
! 6) Statistics per group:
! ----------------------
! * if the user wishes to calculate statistics per group of particles
! (by default there is no statistics of this kind), he must:
! 1) prescribe nbclst the number of groups (limited to 100)
! 2) assign in uslag2 the group to which belongs each particle
! through the iuslag array.
!
! * Be careful, nbclst cannot be modified during a calculation restart
! (isuila=1); even if the calculation of the statistics is not triggered yet
! (istala=0).
nbclst = 0
endif
!===============================================================================
! 6. Option concerning particle inlet
!===============================================================================
! Continous particle injection during the time step
! (and not only at the beginning the time step; this option
! makes it possible to avoid bunches of particles in the vicinity
! of the inlet zones)
! (default off: 0 ; on: 1)
injcon = 0
!===============================================================================
! 7. Techniue of variance reduction: cloning/merge of the particles
!===============================================================================
! Use of the Russian roulette
! default off : 0
! on : 1 without Y+ calculation
! 2 with Y+ calculation
iroule = 0
!===============================================================================
! 8. Options concerning the numerical treatment of the dispersed phase
!===============================================================================
! Integration order of the stochastic differential equations
! (default 2; acceptable values 1 or 2)
!
nordre = 2
! Resolution of the Poisson equation for the particle mean velocity
! and correction of the particle instantaneous velocity
! = 0: not correction of the velocities (default values)
! = 1: correction of the instantaneous velocities
! Caution: OPTION STRICTLY FOR DEVELOPERS; PLEASE LEAVE THE DEFAULT VALUE FOR A
! ======== STANDARD USE OF THE CODE. !
ilapoi = 0
!===============================================================================
! 9. Options concerning the treatment of the dispersed phase
!===============================================================================
! Caution: In this version, the turbulent dispersion works only if
! ------- the continuous phase is calculated with a k-eps or a Rij-eps model
! Activation of the turbulent dispersion
! (default on: 1 ; off: 0)
idistu = 1
! Turbulent dispersion imposed to the fluid one.
! If activated, then particle turbulent dispersion is
! equal to the fluid-particle one. The crossing-trajectory effects
! are suppressed ; it is then a case of turbulent diffusion. If the
! simulated particle density is equal to the fluid density, then
! we are simulating the displacement of fluid particles.
! (default off: 0 ; on: 1)
idiffl = 0
! modcpl :
! = 0 for the incomplete model (default value)
! > 0 for the full model, is equal the absolute number
! of Lagrangian iterations from which the full model is activated
! modcpl must not be lower than idstnt
modcpl = 0
! idirla (=1 or 2 or 3) : 1st, 2nd or 3rd direction
! of the full model. Corresponds to the main direction
! of the flow. Allow to calculate a non-isotropic Lagrangian timescale
! (default idirla=1)
if (modcpl.gt.0) idirla = 1
!===============================================================================
! 10. Options concerning the treatment of specific forces
!===============================================================================
! idlvo = 0
! = 1 dlvo deposition conditions are activated for the
! wall with appropriate conditions idepfa (see uslag2.f90)
idlvo = 0
if (idlvo.eq.1) then
! Constants for the van der Waals forces
! --------------------------------------
! Hamaker constant for the particle/fluid/substrate system:
cstham = 6.d-20
! Constants for the elecstrostatic forces
!----------------------------------------
! Dielectric constant of the fluid (example: water at 293 K)
epseau = 80.10d0
! Electrokinetic potential of the first solid (Volt)
phi1 = 50.d-3
! Electrokinetic potential of the second solid (Volt)
phi2 = -50.d-3
! Ionic force (mol/l)
fion = 1.d-2
endif
!===============================================================================
! 11. Activation of Brownian motion
!===============================================================================
! Activation of Brownian motion:
! (default off: 0 ; on: 1)
! Caution: OPTION FOR DEVELOPERS ONLY
! ========
lamvbr = 0
!===============================================================================
! 12. Activation of deposition model
!===============================================================================
! Activation of the deposition model
! (default off: 0 ; on: 1)
idepst = 0
!===============================================================================
! 12bis. Activation of resuspension model
!===============================================================================
! Activation of the resuspension model
! (default off: 0 ; on: 1)
ireent = 0
! Caution: OPTION FOR DEVELOPERS ONLY
! ========
irough = 0 ! dlvo deposition conditions for roughness surface
! Parameters of the particle resuspension model for the roughness
!average distance between two large-scale asperities
espasg = 20.d-6
!density of the small-scale asperities
denasp = 6.36d13
!radius of small asperities
rayasp = 5.d-9
!radius of large asperities
rayasg = 2.d-6
!Young's modulus (GPa)
modyeq = 266.d9
!===============================================================================
! 12ter. Activation of the clogging model
!===============================================================================
! Activation of the clogging model
! (default off: 0 ; on: 1)
! Caution: OPTION FOR DEVELOPERS ONLY
! ========
iclogst = 0
! Parameters for the particle clogging model
jamlim = 0.74d0 ! Jamming limit
mporos = 0.366d0 ! Minimal porosity
!===============================================================================
! 13. Variables to visualize on the trajectories or the particles
!
! See also cs_user_postprocess_mesh in cs_user_postprocess.c to define
! the associated visualization particle or trajectory segment meshes.
!===============================================================================
! For all the following variables, a value of 0 means "off", and 1 means "on"
! velocity of the flow seen
ivisv1 = 0
! particle velocity
ivisv2 = 0
! residence time
ivistp = 0
! diameter
ivisdm = 0
! temperature
if (iphyla.eq.1 .and. itpvar.eq.1) iviste = 0
! mass
ivismp = 0
if (iphyla.eq.2) then
! coal: diameter of the shrinking core
ivisdk = 0
! coal: mass of water
iviswat = 0
! coal: mass of reactive coal
ivisch = 0
! coal: mass of coke
ivisck = 0
endif
! 13.2 Boundary statistics: visualization of the particle/boundaries interactions
! ------------------------------------------------
! 13.2.1 Generic parameters
! ~~~~~~~~~~~~~~~~~~~~~~~~~~
! Particle/boundary interaction mode
! (default off: 0 ; on: 1)
iensi3 = 0
! Stationary calculation of the boundary statistics from
! the absolute Lagrangian iteration nstbor.
! * nstbor is the absolute number of Lagrangian iterations
! (i.e. including restarts) from which the statistics are averaged
! (in time or by number of interactions)
! * useful if the calculation is stationary (isttio=1)
! * if the absolute number of Lagrangian iterations is inferior to
! nstbor, the statistics are unsteady (i.e. they are reset to zero at each
! Lagrangian iteration)
nstbor = 1
! Seuilf for the management of the boundary statistics
! * the value of seuilf is a statistical weight
! * Each boundary face has undergone a number of particle interactions
! in term of statistical weight (sum of the statistical weights of all
! the particles that interacted with the boundary face); seuilf is the
! minimal value from which the contribution of a face (in statistical terms)
! is not taken into account anymore in the writing of the listing and
! post-processing.
seuilf = 0.d0
! 13.2.2 Information to be recorded
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!
! * To activate them, the user has to set below
! the corresponding keyword to 1.
! * The default selection must be validated or modified by the user.
! * By default the asked information for all the particle/wall interactions
! are written in the same recording.
! * The boundary statistic 'number of particle/boundary interactions' must be
! selected to activate the particle average imoybr(...) = 2
! Number of particle/boundary interactions
! (default off: 0 ; on: 1)
inbrbd = 1
! Particle mass flux associated to particle/boundary interactions
! (default off: 0 ; on: 1)
iflmbd = 1
! Angle between particle velocity and the plan of the boundary face
! (default off: 0 ; on: 1)
iangbd = 0
! Norm of particle velocity during the interation with the boundary face
! (default off: 0 ; on: 1)
ivitbd = 0
! (default off: 0 ; on: 1)
if (iphyla.eq.2 .and. iencra.eq.1) then
! Number of particle/boundary interactions with fouling
iencnbbd = 0
! Mass of fouled coal particles
iencmabd = 0
! Diameter of fouled coal particles
iencdibd = 0
! Coke fraction of fouled coal particles
iencckbd = 0
endif
! Additional user information to be recorded
! ------------------------------------------
! (for instance, erosion rate, temperature..)
! * these additional recordings are stored in the parbor array
! * here we prescribe the nusbor number of additional recordings
! * the max value of this number is nusbrd=10 (in lagpar.f90)
nusbor = 0
! 13.2.3 Name of the recordings for display,
! Average in time of particle average
! of the boundary statistics
! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
! * A priori the user intervenes only in the additional user information
! to be recorded: he must prescribe the name of the recording as well as
! the type of average that he wishes to apply to it for the writing
! of the listing and the post-processing.
! * The applied average is prescribed through the imoybr array:
! - if imoybr(iusb(ii)) = 0 -> no average applied
! - if imoybr(iusb(ii)) = 1 -> a time average is applied, i.e. the
! statistic is divided by the last time step in the case of an unsteady
! calculation with a number of iterations lower than nstbor; or that
! the statistic is divided by the recording time in the case of a
! steady calculation.
! -if imoybr(iusb(ii)) = 2 -> a particle average is applied, i.e. the
! statistic is divided by the number of recorded particle/boundary
! interactions (in terms of statistical weight) in parbor(nfabor,inbr)
! To use this average, inbrbd must be set to 1.
! - if imoybr(iusb(ii)) = 3 -> (coal fouling only) a particle average
! is applied, i.e. the statistic is divided by the number of recorded
! particle/boundary interactions with fouling (in terms of statistical
! weight) in parbor(nfabor,inbr), To use this average, iencnbbd must be
! set to 1.
! * The back-ups in the restart file are performed without applying
! this average.
! * The average is applied if the number of interactions (in statistical
! weight) of the boundary face considered is greater than seuilf;
! otherwise this average is set to zero.
!===============================================================================
! 14. Lagrangian listing
!===============================================================================
! Lagrangian period for the writing of the Lagrangian listing
ntlal = 1
!===============================================================================
return
end subroutine uslag1
|