/usr/share/pyshared/ClusterShell/Task.py is in clustershell 1.6-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 | #
# Copyright CEA/DAM/DIF (2007, 2008, 2009, 2010, 2011, 2012)
# Contributor: Stephane THIELL <stephane.thiell@cea.fr>
#
# This file is part of the ClusterShell library.
#
# This software is governed by the CeCILL-C license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL-C
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL-C license and that you accept its terms.
"""
ClusterShell Task module.
Simple example of use:
>>> from ClusterShell.Task import task_self
>>>
>>> # get task associated with calling thread
... task = task_self()
>>>
>>> # add a command to execute on distant nodes
... task.shell("/bin/uname -r", nodes="tiger[1-30,35]")
<ClusterShell.Worker.Ssh.WorkerSsh object at 0x7f41da71b890>
>>>
>>> # run task in calling thread
... task.resume()
>>>
>>> # get results
... for buf, nodelist in task.iter_buffers():
... print NodeSet.fromlist(nodelist), buf
...
"""
from itertools import imap
import logging
from operator import itemgetter
import socket
import sys
import threading
from time import sleep
import traceback
from ClusterShell.Engine.Engine import EngineAbortException
from ClusterShell.Engine.Engine import EngineTimeoutException
from ClusterShell.Engine.Engine import EngineAlreadyRunningError
from ClusterShell.Engine.Engine import EngineTimer
from ClusterShell.Engine.Factory import PreferredEngine
from ClusterShell.Worker.EngineClient import EnginePort
from ClusterShell.Worker.Ssh import WorkerSsh
from ClusterShell.Worker.Popen import WorkerPopen
from ClusterShell.Worker.Tree import WorkerTree
from ClusterShell.Event import EventHandler
from ClusterShell.MsgTree import MsgTree
from ClusterShell.NodeSet import NodeSet
from ClusterShell.Topology import TopologyParser, TopologyError
from ClusterShell.Propagation import PropagationTreeRouter, PropagationChannel
class TaskException(Exception):
"""Base task exception."""
class TaskError(TaskException):
"""Base task error exception."""
class TimeoutError(TaskError):
"""Raised when the task timed out."""
class AlreadyRunningError(TaskError):
"""Raised when trying to resume an already running task."""
class TaskMsgTreeError(TaskError):
"""Raised when trying to access disabled MsgTree."""
def _getshorthostname():
"""Get short hostname (host name cut at the first dot)"""
return socket.gethostname().split('.')[0]
def _task_print_debug(task, s):
"""
Default task debug printing function. Cannot provide 'print'
directly as it is not a function (will be in Py3k!).
"""
print s
class Task(object):
"""
The Task class defines an essential ClusterShell object which aims to
execute commands in parallel and easily get their results.
More precisely, a Task object manages a coordinated (ie. with respect of
its current parameters) collection of independent parallel Worker objects.
See ClusterShell.Worker.Worker for further details on ClusterShell Workers.
Always bound to a specific thread, a Task object acts like a "thread
singleton". So most of the time, and even more for single-threaded
applications, you can get the current task object with the following
top-level Task module function:
>>> task = task_self()
However, if you want to create a task in a new thread, use:
>>> task = Task()
To create or get the instance of the task associated with the thread
object thr (threading.Thread):
>>> task = Task(thread=thr)
To submit a command to execute locally within task, use:
>>> task.shell("/bin/hostname")
To submit a command to execute to some distant nodes in parallel, use:
>>> task.shell("/bin/hostname", nodes="tiger[1-20]")
The previous examples submit commands to execute but do not allow result
interaction during their execution. For your program to interact during
command execution, it has to define event handlers that will listen for
local or remote events. These handlers are based on the EventHandler
class, defined in ClusterShell.Event. The following example shows how to
submit a command on a cluster with a registered event handler:
>>> task.shell("uname -r", nodes="node[1-9]", handler=MyEventHandler())
Run task in its associated thread (will block only if the calling thread is
the task associated thread):
>>> task.resume()
or
>>> task.run()
You can also pass arguments to task.run() to schedule a command exactly
like in task.shell(), and run it:
>>> task.run("hostname", nodes="tiger[1-20]", handler=MyEventHandler())
A common need is to set a maximum delay for command execution, especially
when the command time is not known. Doing this with ClusterShell Task is
very straighforward. To limit the execution time on each node, use the
timeout parameter of shell() or run() methods to set a delay in seconds,
like:
>>> task.run("check_network.sh", nodes="tiger[1-20]", timeout=30)
You can then either use Task's iter_keys_timeout() method after execution
to see on what nodes the command has timed out, or listen for ev_timeout()
events in your event handler.
To get command result, you can either use Task's iter_buffers() method for
standard output, iter_errors() for standard error after command execution
(common output contents are automatically gathered), or you can listen for
ev_read() and ev_error() events in your event handler and get live command
output.
To get command return codes, you can either use Task's iter_retcodes(),
node_retcode() and max_retcode() methods after command execution, or
listen for ev_hup() events in your event handler.
"""
_std_default = { "stderr" : False,
"stdout_msgtree" : True,
"stderr_msgtree" : True,
"engine" : 'auto',
"port_qlimit" : 100,
"auto_tree" : False,
"topology_file" : "/etc/clustershell/topology.conf" }
_std_info = { "debug" : False,
"print_debug" : _task_print_debug,
"fanout" : 64,
"grooming_delay" : 0.25,
"connect_timeout" : 10,
"command_timeout" : 0 }
_tasks = {}
_taskid_max = 0
_task_lock = threading.Lock()
class _SyncMsgHandler(EventHandler):
"""Special task control port event handler.
When a message is received on the port, call appropriate
task method."""
def ev_msg(self, port, msg):
"""Message received: call appropriate task method."""
# pull out function and its arguments from message
func, (args, kwargs) = msg[0], msg[1:]
# call task method
func(port.task, *args, **kwargs)
class tasksyncmethod(object):
"""Class encapsulating a function that checks if the calling
task is running or is the current task, and allowing it to be
used as a decorator making the wrapped task method thread-safe."""
def __call__(self, f):
def taskfunc(*args, **kwargs):
# pull out the class instance
task, fargs = args[0], args[1:]
# check if the calling task is the current thread task
if task._is_task_self():
return f(task, *fargs, **kwargs)
elif task._dispatch_port:
# no, safely call the task method by message
# through the task special dispatch port
task._dispatch_port.msg_send((f, fargs, kwargs))
else:
task.info("print_debug")(task, "%s: dropped call: %s" % \
(task, str(fargs)))
# modify the decorator meta-data for pydoc
# Note: should be later replaced by @wraps (functools)
# as of Python 2.5
taskfunc.__name__ = f.__name__
taskfunc.__doc__ = f.__doc__
taskfunc.__dict__ = f.__dict__
taskfunc.__module__ = f.__module__
return taskfunc
class _SuspendCondition(object):
"""Special class to manage task suspend condition."""
def __init__(self, lock=threading.RLock(), initial=0):
self._cond = threading.Condition(lock)
self.suspend_count = initial
def atomic_inc(self):
"""Increase suspend count."""
self._cond.acquire()
self.suspend_count += 1
self._cond.release()
def atomic_dec(self):
"""Decrease suspend count."""
self._cond.acquire()
self.suspend_count -= 1
self._cond.release()
def wait_check(self, release_lock=None):
"""Wait for condition if needed."""
self._cond.acquire()
try:
if self.suspend_count > 0:
if release_lock:
release_lock.release()
self._cond.wait()
finally:
self._cond.release()
def notify_all(self):
"""Signal all threads waiting for condition."""
self._cond.acquire()
try:
self.suspend_count = min(self.suspend_count, 0)
self._cond.notifyAll()
finally:
self._cond.release()
def __new__(cls, thread=None):
"""
For task bound to a specific thread, this class acts like a
"thread singleton", so new style class is used and new object
are only instantiated if needed.
"""
if thread:
if thread not in cls._tasks:
cls._tasks[thread] = object.__new__(cls)
return cls._tasks[thread]
return object.__new__(cls)
def __init__(self, thread=None):
"""
Initialize a Task, creating a new thread if needed.
"""
if not getattr(self, "_engine", None):
# first time called
self._default_lock = threading.Lock()
self._default = self.__class__._std_default.copy()
self._info = self.__class__._std_info.copy()
# use factory class PreferredEngine that gives the proper
# engine instance
self._engine = PreferredEngine(self.default("engine"), self._info)
self.timeout = 0
# task synchronization objects
self._run_lock = threading.Lock() # primitive lock
self._suspend_lock = threading.RLock() # reentrant lock
# both join and suspend conditions share the same underlying lock
self._suspend_cond = Task._SuspendCondition(self._suspend_lock, 1)
self._join_cond = threading.Condition(self._suspend_lock)
self._suspended = False
self._quit = False
# Default router
self.topology = None
self.router = None
self.pwrks = {}
self.pmwkrs = {}
# STDIN tree
self._msgtree = None
# STDERR tree
self._errtree = None
# dict of sources to return codes
self._d_source_rc = {}
# dict of return codes to sources
self._d_rc_sources = {}
# keep max rc
self._max_rc = 0
# keep timeout'd sources
self._timeout_sources = set()
# allow no-op call to getters before resume()
self._reset()
# special engine port for task method dispatching
self._dispatch_port = EnginePort(self,
handler=Task._SyncMsgHandler(),
autoclose=True)
self._engine.add(self._dispatch_port)
# set taskid used as Thread name
Task._task_lock.acquire()
Task._taskid_max += 1
self._taskid = Task._taskid_max
Task._task_lock.release()
# create new thread if needed
self._thread_foreign = bool(thread)
if self._thread_foreign:
self.thread = thread
else:
self.thread = thread = \
threading.Thread(None,
Task._thread_start,
"Task-%d" % self._taskid,
args=(self,))
Task._tasks[thread] = self
thread.start()
def _is_task_self(self):
"""Private method used by the library to check if the task is
task_self(), but do not create any task_self() instance."""
return self.thread == threading.currentThread()
def default_excepthook(self, exc_type, exc_value, tb):
"""Default excepthook for a newly Task. When an exception is
raised and uncaught on Task thread, excepthook is called, which
is default_excepthook by default. Once excepthook overriden,
you can still call default_excepthook if needed."""
print >> sys.stderr, 'Exception in thread %s:' % self.thread
traceback.print_exception(exc_type, exc_value, tb, file=sys.stderr)
_excepthook = default_excepthook
def _getexcepthook(self):
return self._excepthook
def _setexcepthook(self, hook):
self._excepthook = hook
# If thread has not been created by us, install sys.excepthook which
# might handle uncaught exception.
if self._thread_foreign:
sys.excepthook = self._excepthook
# When an exception is raised and uncaught on Task's thread,
# excepthook is called. You may want to override this three
# arguments method (very similar of what you can do with
# sys.excepthook)."""
excepthook = property(_getexcepthook, _setexcepthook)
def _thread_start(self):
"""Task-managed thread entry point"""
while not self._quit:
self._suspend_cond.wait_check()
if self._quit:
break
try:
self._resume()
except:
self.excepthook(*sys.exc_info())
self._quit = True
self._terminate(kill=True)
def _run(self, timeout):
"""Run task (always called from its self thread)."""
# check if task is already running
if self._run_lock.locked():
raise AlreadyRunningError("task is already running")
# use with statement later
try:
self._run_lock.acquire()
self._engine.run(timeout)
finally:
self._run_lock.release()
def set_topology(self, topology_file):
"""Set new propagation topology from provided file."""
self.set_default("topology_file", topology_file)
self.topology = self._default_topology()
def _default_topology(self):
try:
parser = TopologyParser()
parser.load(self.default("topology_file"))
return parser.tree(_getshorthostname())
except TopologyError, exc:
logging.getLogger(__name__).exception("_default_topology(): %s", \
str(exc))
raise
return None
def _default_router(self):
if self.router is None:
topology = self.topology
self.router = PropagationTreeRouter(str(topology.root.nodeset), \
topology)
return self.router
def default(self, default_key, def_val=None):
"""
Return per-task value for key from the "default" dictionary.
See set_default() for a list of reserved task default_keys.
"""
self._default_lock.acquire()
try:
return self._default.get(default_key, def_val)
finally:
self._default_lock.release()
def set_default(self, default_key, value):
"""
Set task value for specified key in the dictionary "default".
Users may store their own task-specific key, value pairs
using this method and retrieve them with default().
Task default_keys are:
- "stderr": Boolean value indicating whether to enable
stdout/stderr separation when using task.shell(), if not
specified explicitly (default: False).
- "stdout_msgtree": Whether to enable standard output MsgTree
for automatic internal gathering of result messages
(default: True).
- "stderr_msgtree": Same for stderr (default: True).
- "engine": Used to specify an underlying Engine explicitly
(default: "auto").
- "port_qlimit": Size of port messages queue (default: 32).
Threading considerations
========================
Unlike set_info(), when called from the task's thread or
not, set_default() immediately updates the underlying
dictionary in a thread-safe manner. This method doesn't
wake up the engine when called.
"""
self._default_lock.acquire()
try:
self._default[default_key] = value
finally:
self._default_lock.release()
def info(self, info_key, def_val=None):
"""
Return per-task information. See set_info() for a list of
reserved task info_keys.
"""
return self._info.get(info_key, def_val)
@tasksyncmethod()
def set_info(self, info_key, value):
"""
Set task value for a specific key information. Key, value
pairs can be passed to the engine and/or workers.
Users may store their own task-specific info key, value pairs
using this method and retrieve them with info().
The following example changes the fanout value to 128:
>>> task.set_info('fanout', 128)
The following example enables debug messages:
>>> task.set_info('debug', True)
Task info_keys are:
- "debug": Boolean value indicating whether to enable library
debugging messages (default: False).
- "print_debug": Debug messages processing function. This
function takes 2 arguments: the task instance and the
message string (default: an internal function doing standard
print).
- "fanout": Max number of registered clients in Engine at a
time (default: 64).
- "grooming_delay": Message maximum end-to-end delay requirement
used for traffic grooming, in seconds as float (default: 0.5).
- "connect_timeout": Time in seconds to wait for connecting to
remote host before aborting (default: 10).
- "command_timeout": Time in seconds to wait for a command to
complete before aborting (default: 0, which means
unlimited).
Threading considerations
========================
Unlike set_default(), the underlying info dictionary is only
modified from the task's thread. So calling set_info() from
another thread leads to queueing the request for late apply
(at run time) using the task dispatch port. When received,
the request wakes up the engine when the task is running and
the info dictionary is then updated.
"""
self._info[info_key] = value
def shell(self, command, **kwargs):
"""
Schedule a shell command for local or distant parallel execution. This
essential method creates a local or remote Worker (depending on the
presence of the nodes parameter) and immediately schedules it for
execution in task's runloop. So, if the task is already running
(ie. called from an event handler), the command is started immediately,
assuming current execution contraintes are met (eg. fanout value). If
the task is not running, the command is not started but scheduled for
late execution. See resume() to start task runloop.
The following optional parameters are passed to the underlying local
or remote Worker constructor:
- handler: EventHandler instance to notify (on event) -- default is
no handler (None)
- timeout: command timeout delay expressed in second using a floating
point value -- default is unlimited (None)
- autoclose: if set to True, the underlying Worker is automatically
aborted as soon as all other non-autoclosing task objects (workers,
ports, timers) have finished -- default is False
- stderr: separate stdout/stderr if set to True -- default is False.
Local usage::
task.shell(command [, key=key] [, handler=handler]
[, timeout=secs] [, autoclose=enable_autoclose]
[, stderr=enable_stderr])
Distant usage::
task.shell(command, nodes=nodeset [, handler=handler]
[, timeout=secs], [, autoclose=enable_autoclose]
[, strderr=enable_stderr], [tree=None|False|True])
Example:
>>> task = task_self()
>>> task.shell("/bin/date", nodes="node[1-2345]")
>>> task.resume()
"""
handler = kwargs.get("handler", None)
timeo = kwargs.get("timeout", None)
autoclose = kwargs.get("autoclose", False)
stderr = kwargs.get("stderr", self.default("stderr"))
if kwargs.get("nodes", None):
assert kwargs.get("key", None) is None, \
"'key' argument not supported for distant command"
tree = kwargs.get("tree")
if tree and self.topology is None:
raise TaskError("tree mode required for distant shell command" \
" with unknown topology!")
if tree is None: # means auto
tree = self.default("auto_tree") and (self.topology is not None)
if tree:
# create tree of ssh worker
worker = WorkerTree(NodeSet(kwargs["nodes"]), command=command,
handler=handler, stderr=stderr,
timeout=timeo, autoclose=autoclose)
else:
# create ssh-based worker
worker = WorkerSsh(NodeSet(kwargs["nodes"]), command=command,
handler=handler, stderr=stderr,
timeout=timeo, autoclose=autoclose)
else:
# create (local) worker
worker = WorkerPopen(command, key=kwargs.get("key", None),
handler=handler, stderr=stderr,
timeout=timeo, autoclose=autoclose)
# schedule worker for execution in this task
self.schedule(worker)
return worker
def copy(self, source, dest, nodes, **kwargs):
"""
Copy local file to distant nodes.
"""
assert nodes != None, "local copy not supported"
handler = kwargs.get("handler", None)
stderr = kwargs.get("stderr", self.default("stderr"))
timeo = kwargs.get("timeout", None)
preserve = kwargs.get("preserve", None)
reverse = kwargs.get("reverse", False)
# create a new copy worker
worker = WorkerSsh(nodes, source=source, dest=dest, handler=handler,
stderr=stderr, timeout=timeo, preserve=preserve,
reverse=reverse)
self.schedule(worker)
return worker
def rcopy(self, source, dest, nodes, **kwargs):
"""
Copy distant file or directory to local node.
"""
kwargs['reverse'] = True
return self.copy(source, dest, nodes, **kwargs)
@tasksyncmethod()
def _add_port(self, port):
"""Add an EnginePort instance to Engine (private method)."""
self._engine.add(port)
@tasksyncmethod()
def _remove_port(self, port):
"""Remove a port from Engine (private method)."""
self._engine.remove(port)
def port(self, handler=None, autoclose=False):
"""
Create a new task port. A task port is an abstraction object to
deliver messages reliably between tasks.
Basic rules:
- A task can send messages to another task port (thread safe).
- A task can receive messages from an acquired port either by
setting up a notification mechanism or using a polling
mechanism that may block the task waiting for a message
sent on the port.
- A port can be acquired by one task only.
If handler is set to a valid EventHandler object, the port is
a send-once port, ie. a message sent to this port generates an
ev_msg event notification issued the port's task. If handler
is not set, the task can only receive messages on the port by
calling port.msg_recv().
"""
port = EnginePort(self, handler, autoclose)
self._add_port(port)
return port
def timer(self, fire, handler, interval=-1.0, autoclose=False):
"""
Create a timer bound to this task that fires at a preset time
in the future by invoking the ev_timer() method of `handler'
(provided EventHandler object). Timers can fire either only
once or repeatedly at fixed time intervals. Repeating timers
can also have their next firing time manually adjusted.
The mandatory parameter `fire' sets the firing delay in seconds.
The optional parameter `interval' sets the firing interval of
the timer. If not specified, the timer fires once and then is
automatically invalidated.
Time values are expressed in second using floating point
values. Precision is implementation (and system) dependent.
The optional parameter `autoclose', if set to True, creates
an "autoclosing" timer: it will be automatically invalidated
as soon as all other non-autoclosing task's objects (workers,
ports, timers) have finished. Default value is False, which
means the timer will retain task's runloop until it is
invalidated.
Return a new EngineTimer instance.
See ClusterShell.Engine.Engine.EngineTimer for more details.
"""
assert fire >= 0.0, \
"timer's relative fire time must be a positive floating number"
timer = EngineTimer(fire, interval, autoclose, handler)
# The following method may be sent through msg port (async
# call) if called from another task.
self._add_timer(timer)
# always return new timer (sync)
return timer
@tasksyncmethod()
def _add_timer(self, timer):
"""Add a timer to task engine (thread-safe)."""
self._engine.add_timer(timer)
@tasksyncmethod()
def schedule(self, worker):
"""
Schedule a worker for execution, ie. add worker in task running
loop. Worker will start processing immediately if the task is
running (eg. called from an event handler) or as soon as the
task is started otherwise. Only useful for manually instantiated
workers, for example:
>>> task = task_self()
>>> worker = WorkerSsh("node[2-3]", None, 10, command="/bin/ls")
>>> task.schedule(worker)
>>> task.resume()
"""
assert self in Task._tasks.values(), "deleted task"
# bind worker to task self
worker._set_task(self)
# add worker clients to engine
for client in worker._engine_clients():
self._engine.add(client)
def _resume_thread(self):
"""Resume task - called from another thread."""
self._suspend_cond.notify_all()
def _resume(self):
"""Resume task - called from self thread."""
assert self.thread == threading.currentThread()
try:
try:
self._reset()
self._run(self.timeout)
except EngineTimeoutException:
raise TimeoutError()
except EngineAbortException, exc:
self._terminate(exc.kill)
except EngineAlreadyRunningError:
raise AlreadyRunningError("task engine is already running")
finally:
# task becomes joinable
self._join_cond.acquire()
self._suspend_cond.suspend_count += 1
self._join_cond.notifyAll()
self._join_cond.release()
def resume(self, timeout=0):
"""
Resume task. If task is task_self(), workers are executed in the
calling thread so this method will block until all (non-autoclosing)
workers have finished. This is always the case for a single-threaded
application (eg. which doesn't create other Task() instance than
task_self()). Otherwise, the current thread doesn't block. In that
case, you may then want to call task_wait() to wait for completion.
Warning: the timeout parameter can be used to set an hard limit of
task execution time (in seconds). In that case, a TimeoutError
exception is raised if this delay is reached. Its value is 0 by
default, which means no task time limit (TimeoutError is never
raised). In order to set a maximum delay for individual command
execution, you should use Task.shell()'s timeout parameter instead.
"""
# If you change options here, check Task.run() compatibility.
self.timeout = timeout
self._suspend_cond.atomic_dec()
if self._is_task_self():
self._resume()
else:
self._resume_thread()
def run(self, command=None, **kwargs):
"""
With arguments, it will schedule a command exactly like a Task.shell()
would have done it and run it.
This is the easiest way to simply run a command.
>>> task.run("hostname", nodes="foo")
Without argument, it starts all outstanding actions.
It behaves like Task.resume().
>>> task.shell("hostname", nodes="foo")
>>> task.shell("hostname", nodes="bar")
>>> task.run()
When used with a command, you can set a maximum delay of individual
command execution with the help of the timeout parameter (see
Task.shell's parameters). You can then listen for ev_timeout() events
in your Worker event handlers, or use num_timeout() or
iter_keys_timeout() afterwards.
But, when used as an alias to Task.resume(), the timeout parameter
sets an hard limit of task execution time. In that case, a TimeoutError
exception is raised if this delay is reached.
"""
worker = None
timeout = 0
# Both resume() and shell() support a 'timeout' parameter. We need a
# trick to behave correctly for both cases.
#
# Here, we mock: task.resume(10)
if type(command) in (int, float):
timeout = command
command = None
# Here, we mock: task.resume(timeout=10)
elif 'timeout' in kwargs and command is None:
timeout = kwargs.pop('timeout')
# All other cases mean a classical: shell(...)
# we mock: task.shell("mycommand", [timeout=..., ...])
elif command is not None:
worker = self.shell(command, **kwargs)
self.resume(timeout)
return worker
@tasksyncmethod()
def _suspend_wait(self):
"""Suspend request received."""
assert task_self() == self
# atomically set suspend state
self._suspend_lock.acquire()
self._suspended = True
self._suspend_lock.release()
# wait for special suspend condition, while releasing l_run
self._suspend_cond.wait_check(self._run_lock)
# waking up, atomically unset suspend state
self._suspend_lock.acquire()
self._suspended = False
self._suspend_lock.release()
def suspend(self):
"""
Suspend task execution. This method may be called from another
task (thread-safe). The function returns False if the task
cannot be suspended (eg. it's not running), or returns True if
the task has been successfully suspended.
To resume a suspended task, use task.resume().
"""
# first of all, increase suspend count
self._suspend_cond.atomic_inc()
# call synchronized suspend method
self._suspend_wait()
# wait for stopped task
self._run_lock.acquire() # run_lock ownership transfer
# get result: are we really suspended or just stopped?
result = True
self._suspend_lock.acquire()
if not self._suspended:
# not acknowledging suspend state, task is stopped
result = False
self._run_lock.release()
self._suspend_lock.release()
return result
@tasksyncmethod()
def _abort(self, kill=False):
"""Abort request received."""
assert task_self() == self
# raise an EngineAbortException when task is running
self._engine.abort(kill)
def abort(self, kill=False):
"""
Abort a task. Aborting a task removes (and stops when needed)
all workers. If optional parameter kill is True, the task
object is unbound from the current thread, so calling
task_self() creates a new Task object.
"""
if self._run_lock.acquire(0):
self._quit = True
self._run_lock.release()
if self._is_task_self():
self._terminate(kill)
else:
# abort on stopped/suspended task
self.resume()
else:
# self._run_lock is locked, call synchronized method
self._abort(kill)
def _terminate(self, kill):
"""
Abort completion subroutine.
"""
if kill:
# invalidate dispatch port
self._dispatch_port = None
# clear engine
self._engine.clear(clear_ports=kill)
# clear result objects
self._reset()
# destroy task if needed
if kill:
Task._task_lock.acquire()
try:
del Task._tasks[threading.currentThread()]
finally:
Task._task_lock.release()
def join(self):
"""
Suspend execution of the calling thread until the target task
terminates, unless the target task has already terminated.
"""
self._join_cond.acquire()
try:
if self._suspend_cond.suspend_count > 0:
if not self._suspended:
# ignore stopped task
return
self._join_cond.wait()
finally:
self._join_cond.release()
def running(self):
"""
Return True if the task is running.
"""
return self._engine.running
def _reset(self):
"""
Reset buffers and retcodes management variables.
"""
# check and reset stdout MsgTree
if self.default("stdout_msgtree"):
if not self._msgtree:
self._msgtree = MsgTree()
self._msgtree.clear()
else:
self._msgtree = None
# check and reset stderr MsgTree
if self.default("stderr_msgtree"):
if not self._errtree:
self._errtree = MsgTree()
self._errtree.clear()
else:
self._errtree = None
# other re-init's
self._d_source_rc = {}
self._d_rc_sources = {}
self._max_rc = 0
self._timeout_sources.clear()
def _msg_add(self, source, msg):
"""
Add a worker message associated with a source.
"""
msgtree = self._msgtree
if msgtree is not None:
msgtree.add(source, msg)
def _errmsg_add(self, source, msg):
"""
Add a worker error message associated with a source.
"""
errtree = self._errtree
if errtree is not None:
errtree.add(source, msg)
def _rc_set(self, source, rc, override=True):
"""
Add a worker return code associated with a source.
"""
if not override and self._d_source_rc.has_key(source):
return
# store rc by source
self._d_source_rc[source] = rc
# store source by rc
self._d_rc_sources.setdefault(rc, set()).add(source)
# update max rc
if rc > self._max_rc:
self._max_rc = rc
def _timeout_add(self, source):
"""
Add a worker timeout associated with a source.
"""
# store source in timeout set
self._timeout_sources.add(source)
def _msg_by_source(self, source):
"""
Get a message by its source (worker, key).
"""
if self._msgtree is None:
raise TaskMsgTreeError("stdout_msgtree not set")
s = self._msgtree.get(source)
if s is None:
return None
return str(s)
def _errmsg_by_source(self, source):
"""
Get an error message by its source (worker, key).
"""
if self._errtree is None:
raise TaskMsgTreeError("stderr_msgtree not set")
s = self._errtree.get(source)
if s is None:
return None
return str(s)
def _call_tree_matcher(self, tree_match_func, match_keys=None, worker=None):
"""Call identified tree matcher (items, walk) method with options."""
# filter by worker and optionally by matching keys
if worker and not match_keys:
match = lambda k: k[0] is worker
elif worker and match_keys:
match = lambda k: k[0] is worker and k[1] in match_keys
elif match_keys:
match = lambda k: k[1] in match_keys
else:
match = None
# Call tree matcher function (items or walk)
return tree_match_func(match, itemgetter(1))
def _rc_by_source(self, source):
"""
Get a return code by its source (worker, key).
"""
return self._d_source_rc[source]
def _rc_iter_by_key(self, key):
"""
Return an iterator over return codes for the given key.
"""
for (w, k), rc in self._d_source_rc.iteritems():
if k == key:
yield rc
def _rc_iter_by_worker(self, worker, match_keys=None):
"""
Return an iterator over return codes and keys list for a
specific worker and optional matching keys.
"""
if match_keys:
# Use the items iterator for the underlying dict.
for rc, src in self._d_rc_sources.iteritems():
keys = [t[1] for t in src if t[0] is worker and \
t[1] in match_keys]
if len(keys) > 0:
yield rc, keys
else:
for rc, src in self._d_rc_sources.iteritems():
keys = [t[1] for t in src if t[0] is worker]
if len(keys) > 0:
yield rc, keys
def _krc_iter_by_worker(self, worker):
"""
Return an iterator over key, rc for a specific worker.
"""
for rc, src in self._d_rc_sources.iteritems():
for w, k in src:
if w is worker:
yield k, rc
def _num_timeout_by_worker(self, worker):
"""
Return the number of timed out "keys" for a specific worker.
"""
cnt = 0
for (w, k) in self._timeout_sources:
if w is worker:
cnt += 1
return cnt
def _iter_keys_timeout_by_worker(self, worker):
"""
Iterate over timed out keys (ie. nodes) for a specific worker.
"""
for (w, k) in self._timeout_sources:
if w is worker:
yield k
def _flush_buffers_by_worker(self, worker):
"""
Remove any messages from specified worker.
"""
if self._msgtree is not None:
self._msgtree.remove(lambda k: k[0] == worker)
def _flush_errors_by_worker(self, worker):
"""
Remove any error messages from specified worker.
"""
if self._errtree is not None:
self._errtree.remove(lambda k: k[0] == worker)
def key_buffer(self, key):
"""
Get buffer for a specific key. When the key is associated
to multiple workers, the resulting buffer will contain
all workers content that may overlap. This method returns an
empty buffer if key is not found in any workers.
"""
msgtree = self._msgtree
if msgtree is None:
raise TaskMsgTreeError("stdout_msgtree not set")
select_key = lambda k: k[1] == key
return "".join(imap(str, msgtree.messages(select_key)))
node_buffer = key_buffer
def key_error(self, key):
"""
Get error buffer for a specific key. When the key is associated
to multiple workers, the resulting buffer will contain all
workers content that may overlap. This method returns an empty
error buffer if key is not found in any workers.
"""
errtree = self._errtree
if errtree is None:
raise TaskMsgTreeError("stderr_msgtree not set")
select_key = lambda k: k[1] == key
return "".join(imap(str, errtree.messages(select_key)))
node_error = key_error
def key_retcode(self, key):
"""
Return return code for a specific key. When the key is
associated to multiple workers, return the max return
code from these workers. Raises a KeyError if key is not found
in any finished workers.
"""
codes = list(self._rc_iter_by_key(key))
if not codes:
raise KeyError(key)
return max(codes)
node_retcode = key_retcode
def max_retcode(self):
"""
Get max return code encountered during last run.
How retcodes work
=================
If the process exits normally, the return code is its exit
status. If the process is terminated by a signal, the return
code is 128 + signal number.
"""
return self._max_rc
def iter_buffers(self, match_keys=None):
"""
Iterate over buffers, returns a tuple (buffer, keys). For remote
workers (Ssh), keys are list of nodes. In that case, you should use
NodeSet.fromlist(keys) to get a NodeSet instance (which is more
convenient and efficient):
Optional parameter match_keys add filtering on these keys.
Usage example:
>>> for buffer, nodelist in task.iter_buffers():
... print NodeSet.fromlist(nodelist)
... print buffer
"""
msgtree = self._msgtree
if msgtree is None:
raise TaskMsgTreeError("stdout_msgtree not set")
return self._call_tree_matcher(msgtree.walk, match_keys)
def iter_errors(self, match_keys=None):
"""
Iterate over error buffers, returns a tuple (buffer, keys).
See iter_buffers().
"""
errtree = self._errtree
if errtree is None:
raise TaskMsgTreeError("stderr_msgtree not set")
return self._call_tree_matcher(errtree.walk, match_keys)
def iter_retcodes(self, match_keys=None):
"""
Iterate over return codes, returns a tuple (rc, keys).
Optional parameter match_keys add filtering on these keys.
How retcodes work
=================
If the process exits normally, the return code is its exit
status. If the process is terminated by a signal, the return
code is 128 + signal number.
"""
if match_keys:
# Use the items iterator for the underlying dict.
for rc, src in self._d_rc_sources.iteritems():
keys = [t[1] for t in src if t[1] in match_keys]
yield rc, keys
else:
for rc, src in self._d_rc_sources.iteritems():
yield rc, [t[1] for t in src]
def num_timeout(self):
"""
Return the number of timed out "keys" (ie. nodes).
"""
return len(self._timeout_sources)
def iter_keys_timeout(self):
"""
Iterate over timed out keys (ie. nodes).
"""
for (w, k) in self._timeout_sources:
yield k
def flush_buffers(self):
"""
Flush all task messages (from all task workers).
"""
if self._msgtree is not None:
self._msgtree.clear()
def flush_errors(self):
"""
Flush all task error messages (from all task workers).
"""
if self._errtree is not None:
self._errtree.clear()
@classmethod
def wait(cls, from_thread):
"""
Class method that blocks calling thread until all tasks have
finished (from a ClusterShell point of view, for instance,
their task.resume() return). It doesn't necessarly mean that
associated threads have finished.
"""
Task._task_lock.acquire()
try:
tasks = Task._tasks.copy()
finally:
Task._task_lock.release()
for thread, task in tasks.iteritems():
if thread != from_thread:
task.join()
def pchannel(self, gateway, metaworker): #gw_invoke_cmd):
"""Get propagation channel for gateway (create one if needed)"""
# create channel if needed
if gateway not in self.pwrks:
chan = PropagationChannel(self)
# invoke gateway
timeout = 0
worker = self.shell(metaworker.invoke_gateway, nodes=gateway,
handler=chan, timeout=timeout, tree=False)
self.pwrks[gateway] = worker
else:
worker = self.pwrks[gateway]
chan = worker.eh
if metaworker not in self.pmwkrs:
mw = self.pmwkrs[metaworker] = set()
else:
mw = self.pmwkrs[metaworker]
if worker not in mw:
#print >>sys.stderr, "pchannel++"
worker.metarefcnt += 1
mw.add(worker)
return chan
def _pchannel_release(self, metaworker):
"""Release propagation channel"""
if metaworker in self.pmwkrs:
for worker in self.pmwkrs[metaworker]:
#print >>sys.stderr, "pchannel_release2 %s" % worker
worker.metarefcnt -= 1
if worker.metarefcnt == 0:
#print >>sys.stderr, "worker abort"
worker.eh._close()
#worker.abort()
def task_self():
"""
Return the current Task object, corresponding to the caller's thread of
control (a Task object is always bound to a specific thread). This function
provided as a convenience is available in the top-level ClusterShell.Task
package namespace.
"""
return Task(thread=threading.currentThread())
def task_wait():
"""
Suspend execution of the calling thread until all tasks terminate, unless
all tasks have already terminated. This function is provided as a
convenience and is available in the top-level ClusterShell.Task package
namespace.
"""
Task.wait(threading.currentThread())
def task_terminate():
"""
Destroy the Task instance bound to the current thread. A next call to
task_self() will create a new Task object. This function provided as a
convenience is available in the top-level ClusterShell.Task package
namespace.
"""
task_self().abort(kill=True)
def task_cleanup():
"""
Cleanup routine to destroy all created tasks. This function provided as a
convenience is available in the top-level ClusterShell.Task package
namespace. This is mainly used for testing purposes and should be avoided
otherwise. task_cleanup() may be called from any threads.
"""
# be sure to return to a clean state (no task at all)
while True:
Task._task_lock.acquire()
try:
tasks = Task._tasks.copy()
if len(tasks) == 0:
break
finally:
Task._task_lock.release()
# send abort to all known tasks (it's needed to retry as we may have
# missed the engine notification window (it was just exiting, which is
# quite a common case if we didn't task_join() previously), or we may
# have lost some task's dispatcher port messages.
for task in tasks.itervalues():
task.abort(kill=True)
# also, for other task than self, task.abort() is async and performed
# through an EngineAbortException, so tell the Python scheduler to give
# up control to raise this exception (handled by task._terminate())...
sleep(0.001)
|