This file is indexed.

/usr/share/pyshared/ClusterShell/RangeSet.py is in clustershell 1.6-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
#
# Copyright CEA/DAM/DIF (2012)
#  Contributor: Stephane THIELL <stephane.thiell@cea.fr>
#
# This file is part of the ClusterShell library.
#
# This software is governed by the CeCILL-C license under French law and
# abiding by the rules of distribution of free software.  You can  use,
# modify and/ or redistribute the software under the terms of the CeCILL-C
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and,  more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL-C license and that you accept its terms.

"""
Cluster range set module.

Instances of RangeSet provide similar operations than the builtin set type,
extended to support cluster ranges-like format and stepping support ("0-8/2").
"""

__all__ = ['RangeSetException',
           'RangeSetParseError',
           'RangeSetPaddingError',
           'RangeSet']


class RangeSetException(Exception):
    """Base RangeSet exception class."""

class RangeSetParseError(RangeSetException):
    """Raised when RangeSet parsing cannot be done properly."""
    def __init__(self, part, msg):
        if part:
            msg = "%s : \"%s\"" % (msg, part)
        RangeSetException.__init__(self, msg)
        # faulty subrange; this allows you to target the error
        self.part = part

class RangeSetPaddingError(RangeSetParseError):
    """Raised when a fatal padding incoherency occurs"""
    def __init__(self, part, msg):
        RangeSetParseError.__init__(self, part, "padding mismatch (%s)" % msg)


class RangeSet(set):
    """
    Mutable set of cluster node indexes featuring a fast range-based API.
    
    This class aims to ease the management of potentially large cluster range
    sets and is used by the NodeSet class.

    RangeSet basic constructors:
       >>> rset = RangeSet()            # empty RangeSet
       >>> rset = RangeSet("5,10-42")   # contains 5, 10 to 42
       >>> rset = RangeSet("0-10/2")    # contains 0, 2, 4, 6, 8, 10

    Since v1.6, any iterable of integers can be specified as first argument:
       >>> RangeSet([3, 6, 8, 7, 1])
       1,3,6-8
       >>> rset2 = RangeSet(rset)

    Padding of ranges (eg. "003-009") can be managed through a public RangeSet
    instance variable named padding. It may be changed at any time. Since v1.6,
    padding is a simple display feature per RangeSet object, thus current
    padding value is not taken into account when computing set operations.
    Since v1.6, RangeSet is itself an iterator over its items as integers
    (instead of strings). To iterate over string items as before (with
    optional padding), you can now use the RangeSet.striter() method.

    RangeSet provides methods like union(), intersection(), difference(),
    symmetric_difference() and their in-place versions update(),
    intersection_update(), difference_update(),
    symmetric_difference_update() which conform to the Python Set API.
    """
    _VERSION = 3    # serial version number

    # define __new__() to workaround built-in set subclassing with Python 2.4
    def __new__(cls, pattern=None, autostep=None):
        """Object constructor"""
        return set.__new__(cls)
        
    def __init__(self, pattern=None, autostep=None):
        """Initialize RangeSet with optional string pattern and autostep
        threshold.
        """
        if pattern is None or isinstance(pattern, str):
            set.__init__(self)
        else:
            set.__init__(self, pattern)

        if isinstance(pattern, RangeSet):
            self._autostep = pattern._autostep
            self.padding = pattern.padding
        else:
            self._autostep = None
            self.padding = None
        self.autostep = autostep

        if isinstance(pattern, str):
            self._parse(pattern)

    def _parse(self, pattern):
        """Parse string of comma-separated x-y/step -like ranges"""
        # Comma separated ranges
        if pattern.find(',') < 0:
            subranges = [pattern]
        else:
            subranges = pattern.split(',')

        for subrange in subranges:
            if subrange.find('/') < 0:
                step = 1
                baserange = subrange
            else:
                baserange, step = subrange.split('/', 1)

            try:
                step = int(step)
            except ValueError:
                raise RangeSetParseError(subrange,
                        "cannot convert string to integer")

            if baserange.find('-') < 0:
                if step != 1:
                    raise RangeSetParseError(subrange,
                            "invalid step usage")
                begin = end = baserange
            else:
                begin, end = baserange.split('-', 1)

            # compute padding and return node range info tuple
            try:
                pad = 0
                if int(begin) != 0:
                    begins = begin.lstrip("0")
                    if len(begin) - len(begins) > 0:
                        pad = len(begin)
                    start = int(begins)
                else:
                    if len(begin) > 1:
                        pad = len(begin)
                    start = 0
                if int(end) != 0:
                    ends = end.lstrip("0")
                else:
                    ends = end
                stop = int(ends)
            except ValueError:
                raise RangeSetParseError(subrange,
                        "cannot convert string to integer")

            # check preconditions
            if stop > 1e100 or start > stop or step < 1:
                raise RangeSetParseError(subrange,
                                         "invalid values in range")

            self.add_range(start, stop + 1, step, pad)
        
    @classmethod
    def fromlist(cls, rnglist, autostep=None):
        """Class method that returns a new RangeSet with ranges from provided
        list."""
        inst = RangeSet(autostep=autostep)
        inst.updaten(rnglist)
        return inst

    @classmethod
    def fromone(cls, index, pad=0, autostep=None):
        """Class method that returns a new RangeSet of one single item or
        a single range (from integer or slice object)."""
        inst = RangeSet(autostep=autostep)
        # support slice object with duck-typing
        try:
            inst.add(index, pad)
        except TypeError:
            if not index.stop:
                raise ValueError("Invalid range upper limit (%s)" % index.stop)
            inst.add_range(index.start or 0, index.stop, index.step or 1, pad)
        return inst

    def get_autostep(self):
        """Get autostep value (property)"""
        if self._autostep >= 1E100:
            return None
        else:
            return self._autostep + 1

    def set_autostep(self, val):
        """Set autostep value (property)"""
        if val is None:
            # disabled by default for pdsh compat (+inf is 1E400, but a bug in
            # python 2.4 makes it impossible to be pickled, so we use less)
            # NOTE: Later, we could consider sys.maxint here
            self._autostep = 1E100
        else:
            # - 1 because user means node count, but we means real steps
            self._autostep = int(val) - 1

    autostep = property(get_autostep, set_autostep)
    
    def _sorted(self):
        """Get sorted list from inner set."""
        return sorted(set.__iter__(self))

    def __iter__(self):
        """Iterate over each element in RangeSet."""
        return iter(self._sorted())

    def striter(self):
        """Iterate over each (optionally padded) string element in RangeSet."""
        pad = self.padding or 0
        for i in self._sorted():
            yield "%0*d" % (pad, i)

    def contiguous(self):
        """Object-based iterator over contiguous range sets."""
        pad = self.padding or 0
        for sli in self._contiguous_slices():
            yield RangeSet.fromone(slice(sli.start, sli.stop, sli.step), pad)

    def __reduce__(self):
        """Return state information for pickling."""
        return self.__class__, (str(self),), \
            { 'padding': self.padding, \
              '_autostep': self._autostep, \
              '_version' : RangeSet._VERSION }

    def __setstate__(self, dic):
        """called upon unpickling"""
        self.__dict__.update(dic)
        if getattr(self, '_version', 0) < RangeSet._VERSION:
            # unpickle from old version?
            if getattr(self, '_version', 0) <= 1:
                # v1 (no object versioning) - CSv1.3
                setattr(self, '_ranges', [(slice(start, stop + 1, step), pad) \
                    for start, stop, step, pad in getattr(self, '_ranges')])
            elif hasattr(self, '_ranges'):
                # v2 - CSv1.4-1.5
                self_ranges = getattr(self, '_ranges')
                if self_ranges and type(self_ranges[0][0]) is not slice:
                    # workaround for object pickled from Python < 2.5
                    setattr(self, '_ranges', [(slice(start, stop, step), pad) \
                        for (start, stop, step), pad in self_ranges])
            # convert to v3
            for sli, pad in getattr(self, '_ranges'):
                self.add_range(sli.start, sli.stop, sli.step, pad)
            delattr(self, '_ranges')
            delattr(self, '_length')

    def _strslices(self):
        """Stringify slices list (x-y/step format)"""
        pad = self.padding or 0
        for sli in self.slices():
            if sli.start + 1 == sli.stop:
                yield "%0*d" % (pad, sli.start)
            else:
                assert sli.step >= 0, "Internal error: sli.step < 0"
                if sli.step == 1:
                    yield "%0*d-%0*d" % (pad, sli.start, pad, sli.stop - 1)
                else:
                    yield "%0*d-%0*d/%d" % (pad, sli.start, pad, sli.stop - 1, \
                                            sli.step)
        
    def __str__(self):
        """Get comma-separated range-based string (x-y/step format)."""
        return ','.join(self._strslices())

    # __repr__ is the same as __str__ as it is a valid expression that
    # could be used to recreate a RangeSet with the same value
    __repr__ = __str__

    def _contiguous_slices(self):
        """Internal iterator over contiguous slices in RangeSet."""
        k = j = None
        for i in self._sorted():
            if k is None:
                k = j = i
            if i - j > 1:
                yield slice(k, j + 1, 1)
                k = i
            j = i
        if k is not None:
            yield slice(k, j + 1, 1)

    def _folded_slices(self):
        """Internal generator that is able to retrieve ranges organized by step.
        Complexity: O(n) with n = number of ranges in tree."""
        if len(self) == 0:
            return

        prng = None         # pending range
        istart = None       # processing starting indice
        m = 0               # processing step
        for sli in self._contiguous_slices():
            start = sli.start
            stop = sli.stop
            unitary = (start + 1 == stop)   # one indice?
            if istart is None:  # first loop
                if unitary:
                    istart = start
                else:
                    prng = [start, stop, 1]
                    istart = stop - 1
                i = k = istart
            elif m == 0:        # istart is set but step is unknown
                if not unitary:
                    if prng is not None:
                        # yield and replace pending range
                        yield slice(*prng)
                    else:
                        yield slice(istart, istart + 1, 1)
                    prng = [start, stop, 1]
                    istart = k = stop - 1
                    continue
                i = start
            else:               # step m > 0
                assert m > 0
                i = start
                # does current range lead to broken step?
                if m != i - k or not unitary:
                    #j = i if m == i - k else k
                    if m == i - k: j = i
                    else: j = k
                    # stepped is True when autostep setting does apply
                    stepped = (j - istart >= self._autostep * m)
                    if prng:    # yield pending range?
                        if stepped:
                            prng[1] -= 1
                        else:
                            istart += m
                        yield slice(*prng)
                        prng = None
                if m != i - k:
                    # case: step value has changed
                    if stepped:
                        yield slice(istart, k + 1, m)
                    else:
                        for j in range(istart, k - m + 1, m):
                            yield slice(j, j + 1, 1)
                        if not unitary:
                            yield slice(k, k + 1, 1)
                    if unitary:
                        if stepped:
                            istart = i = k = start
                        else:
                            istart = k
                    else:
                        prng = [start, stop, 1]
                        istart = i = k = stop - 1
                elif not unitary:
                    # case: broken step by contiguous range
                    if stepped:
                        # yield 'range/m' by taking first indice of new range
                        yield slice(istart, i + 1, m)
                        i += 1
                    else:
                        # autostep setting does not apply in that case
                        for j in range(istart, i - m + 1, m):
                            yield slice(j, j + 1, 1)
                    if stop > i + 1:    # current->pending only if not unitary
                        prng = [i, stop, 1]
                    istart = i = k = stop - 1
            m = i - k   # compute step
            k = i
        # exited loop, process pending range or indice...
        if m == 0:
            if prng:
                yield slice(*prng)
            else:
                yield slice(istart, istart + 1, 1)
        else:
            assert m > 0
            stepped = (k - istart >= self._autostep * m)
            if prng:
                if stepped:
                    prng[1] -= 1
                else:
                    istart += m
                yield slice(*prng)
                prng = None
            if stepped:
                yield slice(istart, i + 1, m)
            else:
                for j in range(istart, i + 1, m):
                    yield slice(j, j + 1, 1)

    def slices(self):
        """
        Iterate over RangeSet ranges as Python slice objects.
        """
        # return an iterator
        if self._autostep >= 1E100:
            return self._contiguous_slices()
        else:
            return self._folded_slices()

    def __getitem__(self, index):
        """
        Return the element at index or a subrange when a slice is specified.
        """
        if isinstance(index, slice):
            inst = RangeSet()
            inst._autostep = self._autostep
            inst.padding = self.padding
            inst.update(self._sorted()[index])
            return inst
        elif isinstance(index, int):
            return self._sorted()[index]
        else:
            raise TypeError, \
                "%s indices must be integers" % self.__class__.__name__

    def split(self, nbr):
        """
        Split the rangeset into nbr sub-rangesets (at most). Each
        sub-rangeset will have the same number of elements more or
        less 1. Current rangeset remains unmodified. Returns an
        iterator.

        >>> RangeSet("1-5").split(3) 
        RangeSet("1-2")
        RangeSet("3-4")
        RangeSet("foo5")
        """
        assert(nbr > 0)

        # We put the same number of element in each sub-nodeset.
        slice_size = len(self) / nbr
        left = len(self) % nbr

        begin = 0
        for i in range(0, min(nbr, len(self))):
            length = slice_size + int(i < left)
            yield self[begin:begin + length]
            begin += length

    def add_range(self, start, stop, step=1, pad=0):
        """
        Add a range (start, stop, step and padding length) to RangeSet.
        Like the Python built-in function range(), the last element is
        the largest start + i * step less than stop.
        """
        assert start < stop, "please provide ordered node index ranges"
        assert step > 0
        assert pad >= 0
        assert stop - start < 1e9, "range too large"

        if pad > 0 and self.padding is None:
            self.padding = pad
        set.update(self, range(start, stop, step))

    def copy(self):
        """Return a shallow copy of a RangeSet."""
        cpy = self.__class__()
        cpy._autostep = self._autostep
        cpy.padding = self.padding
        cpy.update(self)
        return cpy

    __copy__ = copy # For the copy module

    def __eq__(self, other):
        """
        RangeSet equality comparison.
        """
        # Return NotImplemented instead of raising TypeError, to
        # indicate that the comparison is not implemented with respect
        # to the other type (the other comparand then gets a change to
        # determine the result, then it falls back to object address
        # comparison).
        if not isinstance(other, RangeSet):
            return NotImplemented
        return len(self) == len(other) and self.issubset(other)

    # Standard set operations: union, intersection, both differences.
    # Each has an operator version (e.g. __or__, invoked with |) and a
    # method version (e.g. union).
    # Subtle:  Each pair requires distinct code so that the outcome is
    # correct when the type of other isn't suitable.  For example, if
    # we did "union = __or__" instead, then Set().union(3) would return
    # NotImplemented instead of raising TypeError (albeit that *why* it
    # raises TypeError as-is is also a bit subtle).

    def _wrap_set_op(self, fun, arg):
        """Wrap built-in set operations for RangeSet to workaround built-in set
        base class issues (RangeSet.__new/init__ not called)"""
        result = fun(self, arg)
        result._autostep = self._autostep
        result.padding = self.padding
        return result

    def __or__(self, other):
        """Return the union of two RangeSets as a new RangeSet.

        (I.e. all elements that are in either set.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.union(other)

    def union(self, other):
        """Return the union of two RangeSets as a new RangeSet.

        (I.e. all elements that are in either set.)
        """
        return self._wrap_set_op(set.union, other)

    def __and__(self, other):
        """Return the intersection of two RangeSets as a new RangeSet.

        (I.e. all elements that are in both sets.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.intersection(other)

    def intersection(self, other):
        """Return the intersection of two RangeSets as a new RangeSet.

        (I.e. all elements that are in both sets.)
        """
        return self._wrap_set_op(set.intersection, other)

    def __xor__(self, other):
        """Return the symmetric difference of two RangeSets as a new RangeSet.

        (I.e. all elements that are in exactly one of the sets.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.symmetric_difference(other)

    def symmetric_difference(self, other):
        """Return the symmetric difference of two RangeSets as a new RangeSet.
        
        (ie. all elements that are in exactly one of the sets.)
        """
        return self._wrap_set_op(set.symmetric_difference, other)

    def  __sub__(self, other):
        """Return the difference of two RangeSets as a new RangeSet.

        (I.e. all elements that are in this set and not in the other.)
        """
        if not isinstance(other, set):
            return NotImplemented
        return self.difference(other)

    def difference(self, other):
        """Return the difference of two RangeSets as a new RangeSet.

        (I.e. all elements that are in this set and not in the other.)
        """
        return self._wrap_set_op(set.difference, other)

    # Membership test

    def __contains__(self, element):
        """Report whether an element is a member of a RangeSet.
        Element can be either another RangeSet object, a string or an
        integer.

        (Called in response to the expression `element in self'.)
        """
        if isinstance(element, set):
            return element.issubset(self)

        return set.__contains__(self, int(element))

    # Subset and superset test

    def issubset(self, other):
        """Report whether another set contains this RangeSet."""
        self._binary_sanity_check(other)
        return set.issubset(self, other)

    def issuperset(self, other):
        """Report whether this RangeSet contains another set."""
        self._binary_sanity_check(other)
        return set.issuperset(self, other)

    # Inequality comparisons using the is-subset relation.
    __le__ = issubset
    __ge__ = issuperset

    def __lt__(self, other):
        self._binary_sanity_check(other)
        return len(self) < len(other) and self.issubset(other)

    def __gt__(self, other):
        self._binary_sanity_check(other)
        return len(self) > len(other) and self.issuperset(other)

    # Assorted helpers

    def _binary_sanity_check(self, other):
        """Check that the other argument to a binary operation is also  a set,
        raising a TypeError otherwise."""
        if not isinstance(other, set):
            raise TypeError, "Binary operation only permitted between sets"

    # In-place union, intersection, differences.
    # Subtle:  The xyz_update() functions deliberately return None,
    # as do all mutating operations on built-in container types.
    # The __xyz__ spellings have to return self, though.
    
    def __ior__(self, other):
        """Update a RangeSet with the union of itself and another."""
        self._binary_sanity_check(other)
        set.__ior__(self, other)
        return self

    def union_update(self, other):
        """Update a RangeSet with the union of itself and another."""
        self.update(other)

    def __iand__(self, other):
        """Update a RangeSet with the intersection of itself and another."""
        self._binary_sanity_check(other)
        set.__iand__(self, other)
        return self

    def intersection_update(self, other):
        """Update a RangeSet with the intersection of itself and another."""
        set.intersection_update(self, other)

    def __ixor__(self, other):
        """Update a RangeSet with the symmetric difference of itself and
        another."""
        self._binary_sanity_check(other)
        set.symmetric_difference_update(self, other)
        return self

    def symmetric_difference_update(self, other):
        """Update a RangeSet with the symmetric difference of itself and
        another."""
        set.symmetric_difference_update(self, other)
        
    def __isub__(self, other):
        """Remove all elements of another set from this RangeSet."""
        self._binary_sanity_check(other)
        set.difference_update(self, other)
        return self

    def difference_update(self, other, strict=False):
        """Remove all elements of another set from this RangeSet.
        
        If strict is True, raise KeyError if an element cannot be removed.
        (strict is a RangeSet addition)"""
        if strict and other not in self:
            raise KeyError(other.difference(self)[0])
        set.difference_update(self, other)

    # Python dict-like mass mutations: update, clear

    def update(self, iterable):
        """Add all integers from an iterable (such as a list)."""
        if isinstance(iterable, RangeSet):
            # keep padding unless is has not been defined yet
            if self.padding is None and iterable.padding is not None:
                self.padding = iterable.padding
        assert type(iterable) is not str
        set.update(self, iterable)

    def updaten(self, rangesets):
        """
        Update a rangeset with the union of itself and several others.
        """
        for rng in rangesets:
            if isinstance(rng, set):
                self.update(rng)
            else:
                self.update(RangeSet(rng))
            # py2.5+
            #self.update(rng if isinstance(rng, set) else RangeSet(rng))

    def clear(self):
        """Remove all elements from this RangeSet."""
        set.clear(self)
        self.padding = None

    # Single-element mutations: add, remove, discard

    def add(self, element, pad=0):
        """Add an element to a RangeSet.
        This has no effect if the element is already present.
        """
        set.add(self, int(element))
        if pad > 0 and self.padding is None:
            self.padding = pad

    def remove(self, element):
        """Remove an element from a RangeSet; it must be a member.
        
        Raise KeyError if element is not contained in RangeSet.
        Raise ValueError if element is not castable to integer.
        """
        set.remove(self, int(element))

    def discard(self, element):
        """Remove element from the RangeSet if it is a member.

        If the element is not a member, do nothing.
        """
        try:
            i = int(element)
            set.discard(self, i)
        except ValueError:
            pass # ignore other object types