This file is indexed.

/usr/share/calc/help/resource is in apcalc-common 2.12.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
Calc standard resource files
----------------------------

To load a resource file, try:

    read filename

You do not need to add the .cal extension to the filename.  Calc
will search along the $CALCPATH (see ``help environment'').

Normally a resource file will simply define some functions.  By default,
most resource files will print out a short message when they are read.
For example:

    ; read lucas
    lucas(h,n) defined
    gen_u0(h,n,v1) defined
    gen_v1(h,n) defined
    ldebug(funct,str) defined

will cause calc to load and execute the 'lucas.cal' resource file.
Executing the resource file will cause several functions to be defined.
Executing the lucas function:

    ; lucas(149,60)
	    1
    ; lucas(146,61)
	    0

shows that 149*2^60-1 is prime whereas 146*2^61-1 is not.

=-=

Calc resource file files are provided because they serve as examples of
how use the calc language, and/or because the authors thought them to
be useful!

If you write something that you think is useful, please join the
low volume calc mailing list calc-tester.  Then send your contribution
to the calc-tester mailing list.

To subscribe to the calc-tester mailing list, visit the following URL:

	https://www.listbox.com/subscribe/?list_id=239342

    To help determine you are a human and not just a spam bot,
    you will be required to provide the following additional info:

	Your Name
	Calc Version
	Operating System
	The date 7 days ago

    This is a low volume moderated mailing list.

    This mailing list replaces calc-tester at asthe dot com list.

    If you need a human to help you with your mailing list subscription,
    please send EMail to our special:

	calc-tester-maillist-help at asthe dot com

	NOTE: Remove spaces and replace 'at' with @, 'dot' with .

    address.  To be sure we see your EMail asking for help with your
    mailing list subscription, please use the following phase in your
    EMail Subject line:

	calc tester mailing list help

    That phrase in your subject line will help ensure your
    request will get past our anti-spam filters.  You may have
    additional words in your subject line.

=-=

By convention, a resource file only defines and/or initializes functions,
objects and variables.	(The regress.cal and testxxx.cal regression test
suite is an exception.)	 Also by convention, an additional usage message
regarding important object and functions is printed.

If a resource file needs to load another resource file, it should use
the -once version of read:

    /* pull in needed resource files */
    read -once "surd"
    read -once "lucas"

This will cause the needed resource files to be read once.  If these
files have already been read, the read -once will act as a noop.

The "resource_debug" parameter is intended for controlling the possible
display of special information relating to functions, objects, and
other structures created by instructions in calc resource files.
Zero value of config("resource_debug") means that no such information
is displayed.  For other values, the non-zero bits which currently
have meanings are as follows:

    n		Meaning of bit n of config("resource_debug")

    0	When a function is defined, redefined or undefined at
	interactive level, a message saying what has been done
	is displayed.

    1	When a function is defined, redefined or undefined during
	the reading of a file, a message saying what has been done
	is displayed.

    2	Show func will display more information about a functions
	arguments as well as more argument summary information.

    3	During execution, allow calc standard resource files
	to output additional debugging information.

The value for config("resource_debug") in both oldstd and newstd is 3,
but if calc is invoked with the -d flag, its initial value is zero.
Thus, if calc is started without the -d flag, until config("resource_debug")
is changed, a message will be output when a function is defined
either interactively or during the reading of a file.

Sometimes the information printed is not enough.  In addition to the
standard information, one might want to print:

	* useful obj definitions
	* functions with optional args
	* functions with optional args where the param() interface is used

For these cases we suggest that you place at the bottom of your code
something that prints extra information if config("resource_debug") has
either of the bottom 2 bits set:

	if (config("resource_debug") & 3) {
		print "obj xyz defined";
		print "funcA([val1 [, val2]]) defined";
		print "funcB(size, mass, ...) defined";
	}

If your the resource file needs to output special debugging information,
we recommend that you check for bit 3 of the config("resource_debug")
before printing the debug statement:

	if (config("resource_debug") & 8) {
		print "DEBUG: This a sample debug statement";
	}

=-=

The following is a brief description of some of the calc resource files
that are shipped with calc.  See above for example of how to read in
and execute these files.

alg_config.cal

    global test_time
    mul_loop(repeat,x) defined
    mul_ratio(len) defined
    best_mul2() defined
    sq_loop(repeat,x) defined
    sq_ratio(len) defined
    best_sq2() defined
    pow_loop(repeat,x,ex) defined
    pow_ratio(len) defined
    best_pow2() defined

    These functions search for an optimal value of config("mul2"),
    config("sq2"), and config("pow2").  The calc default values of these
    configuration values were set by running this resource file on a
    1.8GHz AMD 32-bit CPU of ~3406 BogoMIPS.

    The best_mul2() function returns the optimal value of config("mul2").
    The best_sq2() function returns the optimal value of config("sq2").
    The best_pow2() function returns the optimal value of config("pow2").
    The other functions are just support functions.

    By design, best_mul2(), best_sq2(), and best_pow2() take a few
    minutes to run.  These functions increase the number of times a
    given computational loop is executed until a minimum amount of CPU
    time is consumed.  To watch these functions progress, one can set
    the config("user_debug") value.

    Here is a suggested way to use this resource file:

	; read alg_config
	; config("user_debug",2),;
	; best_mul2(); best_sq2(); best_pow2();
	; best_mul2(); best_sq2(); best_pow2();
	; best_mul2(); best_sq2(); best_pow2();

    NOTE: It is perfectly normal for the optimal value returned to differ
    slightly from run to run.  Slight variations due to inaccuracy in
    CPU timings will cause the best value returned to differ slightly
    from run to run.

    One can use a calc startup file to change the initial values of
    config("mul2"), config("sq2"), and config("pow2").  For example one
    can place into ~/.calcrc these lines:

	config("mul2", 1780),;
	config("sq2", 3388),;
	config("pow2", 176),;

    to automatically and silently change these config values.
    See help/config and CALCRC in help/environment for more information.


beer.cal

    This calc resource is calc's contribution to the 99 Bottles of Beer
    web page:

	http://www.ionet.net/~timtroyr/funhouse/beer.html#calc

     NOTE: This resource produces a lot of output.  :-)


bernoulli.cal

    B(n)

    Calculate the nth Bernoulli number.

    NOTE: There is now a bernoulli() builtin function.  This file is
    	  left here for backward compatibility and now simply returns
	  the builtin function.


bernpoly.cal

    bernpoly(n,z)

    Computes the nth Bernoulli polynomial at z for arbitrary n,z.  See:

        http://en.wikipedia.org/wiki/Bernoulli_polynomials
        http://mathworld.wolfram.com/BernoulliPolynomial.html

    for further information


bigprime.cal

    bigprime(a, m, p)

    A prime test, base a, on p*2^x+1 for even x>m.


brentsolve.cal

    brentsolve(low, high,eps)

    A root-finder implementwed with the Brent-Dekker trick.

    brentsolve2(low, high,which,eps)

    The second function, brentsolve2(low, high,which,eps) has some lines
    added to make it easier to hardcode the name of the helper function
    different from the obligatory "f".

    See:

        http://en.wikipedia.org/wiki/Brent%27s_method
        http://mathworld.wolfram.com/BrentsMethod.html

    to find out more about the Brent-Dekker method.


constants.cal

    e()
    G()

    An implementation of different constants to arbitrary precision.


chi.cal

    Z(x[, eps])
    P(x[, eps])
    chi_prob(chi_sq, v[, eps])

    Computes the Probability, given the Null Hypothesis, that a given
    Chi squared values >= chi_sq with v degrees of freedom.

    The chi_prob() function does not work well with odd degrees of freedom.
    It is reasonable with even degrees of freedom, although one must give
    a sufficiently small error term as the degrees gets large (>100).

    The Z(x) and P(x) are internal statistical functions.

    eps is an optional epsilon() like error term.


chrem.cal

    chrem(r1,m1 [,r2,m2, ...])
    chrem(rlist, mlist)

    Chinese remainder theorem/problem solver.


deg.cal

    deg(deg, min, sec)
    deg_add(a, b)
    deg_neg(a)
    deg_sub(a, b)
    deg_mul(a, b)
    deg_print(a)

    Calculate in degrees, minutes, and seconds.  For a more functional
    version see dms.cal.


dms.cal

    dms(deg, min, sec)
    dms_add(a, b)
    dms_neg(a)
    dms_sub(a, b)
    dms_mul(a, b)
    dms_print(a)
    dms_abs(a)
    dms_norm(a)
    dms_test(a)
    dms_int(a)
    dms_frac(a)
    dms_rel(a,b)
    dms_cmp(a,b)
    dms_inc(a)
    dms_dec(a)

    Calculate in degrees, minutes, and seconds.  Unlike deg.cal, increments
    are on the arc second level.  See also hms.cal.


dotest.cal

    dotest(dotest_file [,dotest_code [,dotest_maxcond]])

    dotest_file

	Search along CALCPATH for dotest_file, which contains lines that
	should evaluate to 1.  Comment lines and empty lines are ignored.
	Comment lines should use ## instead of the multi like /* ... */
	because lines are evaluated one line at a time.

    dotest_code

	Assign the code number that is to be printed at the start of
	each non-error line and after **** in each error line.
	The default code number is 999.

    dotest_maxcond

	The maximum number of error conditions that may be detected.
	An error condition is not a sign of a problem, in some cases
	a line deliberately forces an error condition.	A value of -1,
	the default, implies a maximum of 2147483647.

    Global variables and functions must be declared ahead of time because
    the dotest scope of evaluation is a line at a time.  For example:

	read dotest.cal
	read set8700.cal
	dotest("set8700.line");


factorial.cal

    factorial(n)

    Calculates the product of the positive integers up to and including n.

    See:

	http://en.wikipedia.org/wiki/Factorial

    for information on the factorial. This function depends on the script
    toomcook.cal.


    primorial(a,b)

    Calculates the product of the primes between a and b. If a is not prime
    the next higher prime is taken as the starting point. If b is not prime
    the next lower prime is taking as the end point b. The end point b must
    not exceed 4294967291.  See:

	http://en.wikipedia.org/wiki/Primorial

    for information on the primorial.


factorial2.cal

    This file contents a small variety of integer functions that can, with
    more or less pressure, be related to the factorial.

    doublefactorial(n)

    Calculates the double factorial n!! with different algorithms for
        - n odd
        - n even and positive
        - n (real|complex) sans the negative half integers

    See:

        http://en.wikipedia.org/wiki/Double_factorial
        http://mathworld.wolfram.com/DoubleFactorial.html

    for information on the double factorial. This function depends on
    the script toomcook.cal, factorial.cal and specialfunctions.cal.


    binomial(n,k)

    Calculates the binomial coefficients for n large and k = k \pm
    n/2. Defaults to the built-in function for smaller and/or different
    values. Meant as a complete replacement for comb(n,k) with only a
    very small overhead.  See:

        http://en.wikipedia.org/wiki/Binomial_coefficient

    for information on the binomial. This function depends on the script
    toomcook.cal factorial.cal and specialfunctions.cal.


    bigcatalan(n)

    Calculates the n-th Catalan number for n large. It is usefull
    above n~50,000 but defaults to the builtin function for smaller
    values.Meant as a complete replacement for catalan(n) with only a
    very small overhead.  See:

        http://en.wikipedia.org/wiki/Catalan_number
        http://mathworld.wolfram.com/CatalanNumber.html

    for information on Catalan numbers. This function depends on the scripts
    toomcook.cal, factorial.cal and specialfunctions.cal.


    stirling1(n,m)

    Calculates the Stirling number of the first kind. It does so with
    building a list of all of the smaller results. It might be a good
    idea, though, to run it once for the highest n,m first if many
    Stirling  numbers are needed at once, for example in a series.  See:

        http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
        http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
        Algorithm 3.17,  Donald Kreher and Douglas Simpson, "Combinatorial
          Algorithms", CRC Press, 1998, page 89.

    for information on Stirling numbers of the first kind.


    stirling2(n,m)
    stirling2caching(n,m)

    Calculate the Stirling number of the second kind.
    The first function stirling2(n,m) does it with the sum
                       m
                      ====
                 1    \      n      m - k
                 --    >    k  (- 1)      binomial(m, k)
                 m!   /
                      ====
                      k = 0

    The other function stirling2caching(n,m) does it by way of the
    reccurence relation and keeps all earlier results. This function
    is much slower for computing a single value than stirling2(n,m) but
    is very usefull if many Stirling numbers are needed, for example in
    a series.  See:

        http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
        http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html

        Algorithm 3.17,  Donald Kreher and Douglas Simpson, "Combinatorial
          Algorithms", CRC Press, 1998, page 89.

    for information on Stirling numbers of the second kind.


    bell(n)

    Calculate the n-th Bell number. This may take some time for large n.
    See:

        http://oeis.org/A000110
        http://en.wikipedia.org/wiki/Bell_number
        http://mathworld.wolfram.com/BellNumber.html

    for information on Bell numbers.


    subfactorial(n)

    Calculate the n-th subfactorial or derangement. This may take some
    time for large n.  See:

        http://mathworld.wolfram.com/Derangement.html
        http://en.wikipedia.org/wiki/Derangement

    for information on subfactorials.


    risingfactorial(x,n)

    Calculates the rising factorial or Pochammer symbol of almost arbitrary
    x,n.  See:

        http://en.wikipedia.org/wiki/Pochhammer_symbol
        http://mathworld.wolfram.com/PochhammerSymbol.html

    for information on rising factorials.

    fallingfactorial(x,n)

    Calculates the rising factorial of almost arbitrary x,n.  See:

        http://en.wikipedia.org/wiki/Pochhammer_symbol
        http://mathworld.wolfram.com/PochhammerSymbol.html

    for information on falling factorials.


ellip.cal

    efactor(iN, ia, B, force)

    Attempt to factor using the elliptic functions: y^2 = x^3 + a*x + b.


gvec.cal

    gvec(function, vector)

    Vectorize any single-input function or trailing operator.


hello.cal

    Calc's contribution to the Hello World! page:

	http://www.latech.edu/~acm/HelloWorld.shtml
	http://www.latech.edu/~acm/helloworld/calc.html

     NOTE: This resource produces a lot of output.  :-)


hms.cal

    hms(hour, min, sec)
    hms_add(a, b)
    hms_neg(a)
    hms_sub(a, b)
    hms_mul(a, b)
    hms_print(a)
    hms_abs(a)
    hms_norm(a)
    hms_test(a)
    hms_int(a)
    hms_frac(a)
    hms_rel(a,b)
    hms_cmp(a,b)
    hms_inc(a)
    hms_dec(a)

    Calculate in hours, minutes, and seconds.  See also dmscal.


infinities.cal

    isinfinite(x)
    iscinf(x)
    ispinf(x)
    isninf(x)
    cinf()
    ninf()
    pinf()

    The symbolic handling of infinities. Needed for intnum.cal but might be
    usefull elsewhere, too.


intfile.cal

    file2be(filename)

	Read filename and return an integer that is built from the
	octets in that file in Big Endian order.  The first octets
	of the file become the most significant bits of the integer.

    file2le(filename)

	Read filename and return an integer that is built from the
	octets in that file in Little Endian order.  The first octets
	of the file become the most significant bits of the integer.

    be2file(v, filename)

	Write the absolute value of v into filename in Big Endian order.
	The v argument must be on integer.  The most significant bits
	of the integer become the first octets of the file.

    le2file(v, filename)

	Write the absolute value of v into filename in Little Endian order.
	The v argument must be on integer.  The least significant bits
	of the integer become the last octets of the file.


intnum.cal

    quadtsdeletenodes()
    quadtscomputenodes(order, expo, eps)
    quadtscore(a, b, n)
    quadts(a, b, points)
    quadglcomputenodes(N)
    quadgldeletenodes()
    quadglcore(a, b, n)
    quadgl(a, b, points)
    quad(a, b, points = -1, method = "tanhsinh")
    makerange(start, end, steps)
    makecircle(radius, center, points)
    makeellipse(angle, a, b, center, points)
    makepoints()

    This file offers some methods for numerical integration. Implemented are
    the Gauss-Legendre and the tanh-sinh quadrature.

    All functions are usefull to some extend but the main function for
    quadrature is quad(), which is not much more than an abstraction layer.

    The main workers are quadgl() for Gauss-legendre and quadts() for the
    tanh-sinh quadrature. The limits of the integral can be anything in the
    complex plane and the extended real line. The latter means that infinite
    limits are supported by way of the smbolic infinities implemented in the
    file infinities.cal (automatically linked in by intnum.cal).

    Integration in parts and contour is supported by the "points" argument
    which takes either a number or a list. the functions starting with "make"
    allow for a less error prone use.

    The function to evaluate must have the name "f".

    Examples (shamelessly stolen from mpmath):

        ; define f(x){return sin(x);}
        f(x) defined
        ; quadts(0,pi())  -  2
	    0.00000000000000000000
        ; quadgl(0,pi())  -  2
	    0.00000000000000000000

    Sometimes rounding errors accumulate, it might be a good idea to crank up
    the working precision a notch or two.

        ; define f(x){ return exp(-x^2);}
        f(x) redefined
        ; quadts(0,pinf())  - pi()
	    0.00000000000000000000
        ; quadgl(0,pinf())  - pi()
	    0.00000000000000000001

        ; define f(x){ return exp(-x^2);}
        f(x) redefined
        ; quadgl(ninf(),pinf()) - sqrt(pi())
	    0.00000000000000000000
        ; quadts(ninf(),pinf()) - sqrt(pi())
	   -0.00000000000000000000

    Using the "points" parameter is a bit tricky

        ; define f(x){ return 1/x;  }
        f(x) redefined
        ; quadts(1,1,mat[3]={1i,-1,-1i})  -  2i*pi()
	    0.00000000000000000001i
        ; quadgl(1,1,mat[3]={1i,-1,-1i})  -  2i*pi()
	    0.00000000000000000001i

    The make* functions make it a bit simpler

        ; quadts(1,1,makepoints(1i,-1,-1i))  -  2i*pi()
	    0.00000000000000000001i
        ; quadgl(1,1,makepoints(1i,-1,-1i))  -  2i*pi()
	    0.00000000000000000001i

        ; define f(x){ return abs(sin(x));}
        f(x) redefined
        ; quadts(0,2*pi(),makepoints(pi()))  - 4
	    0.00000000000000000000
        ; quadgl(0,2*pi(),makepoints(pi()))  - 4
	    0.00000000000000000000

    The quad*core functions do not offer anything fancy but the third parameter
    controls the so called "order" which is just the number of nodes computed.
    This can be quite usefull in some circumstances.

        ; quadgldeletenodes()
        ; define f(x){ return exp(x);}
        f(x) redefined
        ; s=usertime();quadglcore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
	    0.00000000000000000001
	    2.632164
        ; s=usertime();quadglcore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
	    0.00000000000000000001
	    0.016001
        ; quadgldeletenodes()
        ; s=usertime();quadglcore(-3,3,14)- (exp(3)-exp(-3));e=usertime();e-s
	   -0.00000000000000000000
	    0.024001
        ; s=usertime();quadglcore(-3,3,14)- (exp(3)-exp(-3));e=usertime();e-s
	   -0.00000000000000000000
	    0

    It is not much but can sum up. The tanh-sinh algorithm is not optimizable
    as much as the Gauss-Legendre algorithm but is per se much faster.

        ; s=usertime();quadtscore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
	    -0.00000000000000000001
	     0.128008
        ; s=usertime();quadtscore(-3,3)- (exp(3)-exp(-3));e=usertime();e-s
	    -0.00000000000000000001
	     0.036002
        ; s=usertime();quadtscore(-3,3,49)- (exp(3)-exp(-3));e=usertime();e-s
	    -0.00000000000000000000
	     0.036002
        ; s=usertime();quadtscore(-3,3,49)- (exp(3)-exp(-3));e=usertime();e-s
	    -0.00000000000000000000
	     0.01200


lambertw.cal

     lambertw(z,branch)

     Computes Lambert's W-function at "z" at branch "branch". See

         http://en.wikipedia.org/wiki/Lambert_W_function
         http://mathworld.wolfram.com/LambertW-Function.html
         https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf
         http://arxiv.org/abs/1003.1628

     to get more information.

     This file includes also an implementation for the series described in
     Corless et al. (1996) eq. 4.22 (W-pdf) and Verebic (2010) (arxive link)
     eqs.35-37.

     The series has been implemented to get a different algorithm
     for checking the results. This was necessary because the results
     of the implementation in Maxima, the only program with a general
     lambert-w implementation at hand at that time, differed slightly. The
     Maxima versions tested were: Maxima 5.21.1 and 5.29.1. The current
     version of this code concurs with the results of Mathematica`s(tm)
     ProductLog[branch,z] with the tested values.

     The series is only valid for the branches 0,-1, real z, converges
     for values of z _very_ near the branchpoint -exp(-1) only, and must
     be given the branches explicitly.  See the code in lambertw.cal
     for further information.


linear.cal

    linear(x0, y0, x1, y1, x)

    Returns the value y such that (x,y) in on the line (x0,y0), (x1,y1).
    Requires x0 != y0.


lnseries.cal

    lnseries(limit)
    lnfromseries(n)
    deletelnseries()

    Calculates a series of n natural logarithms at 1,2,3,4...n. It
    does so by computing the prime factorization of all of the number
    sequence 1,2,3...n, calculates the natural logarithms of the primes
    in 1,2,3...n and uses the above factorization to build the natural
    logarithms of the rest of the sequence by sadding the logarithms of
    the primes in the factorization.  This is faster for high precision
    of the logarithms and/or long sequences.

    The sequence need to be initiated by running either lnseries(n) or
    lnfromseries(n) once with n the upper limit of the sequence.


lucas.cal

    lucas(h, n)

    Perform a primality test of h*2^n-1, with 1<=h<2*n.


lucas_chk.cal

    lucas_chk(high_n)

    Test all primes of the form h*2^n-1, with 1<=h<200 and n <= high_n.
    Requires lucas.cal to be loaded.  The highest useful high_n is 1000.

    Used by regress.cal during the 2100 test set.


lucas_tbl.cal

    Lucasian criteria for primality tables.


mersenne.cal

    mersenne(p)

    Perform a primality test of 2^p-1, for prime p>1.


mfactor.cal

    mfactor(n [, start_k=1 [, rept_loop=10000 [, p_elim=17]]])

    Return the lowest factor of 2^n-1, for n > 0.  Starts looking for factors
    at 2*start_k*n+1.  Skips values that are multiples of primes <= p_elim.
    By default, start_k == 1, rept_loop = 10000 and p_elim = 17.

    The p_elim == 17 overhead takes ~3 minutes on an 200 Mhz r4k CPU and
    requires about ~13 Megs of memory.	The p_elim == 13 overhead
    takes about 3 seconds and requires ~1.5 Megs of memory.

    The value p_elim == 17 is best for long factorizations.  It is the
    fastest even thought the initial startup overhead is larger than
    for p_elim == 13.


mod.cal

    lmod(a)
    mod_print(a)
    mod_one()
    mod_cmp(a, b)
    mod_rel(a, b)
    mod_add(a, b)
    mod_sub(a, b)
    mod_neg(a)
    mod_mul(a, b)
    mod_square(a)
    mod_inc(a)
    mod_dec(a)
    mod_inv(a)
    mod_div(a, b)
    mod_pow(a, b)

    Routines to handle numbers modulo a specified number.


natnumset.cal

    isset(a)
    setbound(n)
    empty()
    full()
    isin(a, b)
    addmember(a, n)
    rmmember(a, n)
    set()
    mkset(s)
    primes(a, b)
    set_max(a)
    set_min(a)
    set_not(a)
    set_cmp(a, b)
    set_rel(a, b)
    set_or(a, b)
    set_and(a, b)
    set_comp(a)
    set_setminus(a, b)
    set_diff(a,b)
    set_content(a)
    set_add(a, b)
    set_sub(a, b)
    set_mul(a, b)
    set_square(a)
    set_pow(a, n)
    set_sum(a)
    set_plus(a)
    interval(a, b)
    isinterval(a)
    set_mod(a, b)
    randset(n, a, b)
    polyvals(L, A)
    polyvals2(L, A, B)
    set_print(a)

    Demonstration of how the string operators and functions may be used
    for defining and working with sets of natural numbers not exceeding a
    user-specified bound.


pell.cal

    pellx(D)
    pell(D)

    Solve Pell's equation; Returns the solution X to: X^2 - D * Y^2 = 1.
    Type the solution to Pell's equation for a particular D.


pi.cal

    qpi(epsilon)
    piforever()

    The qpi() calculate pi within the specified epsilon using the quartic
    convergence iteration.

    The piforever() prints digits of pi, nicely formatted, for as long
    as your free memory space and system up time allows.

    The piforever() function (written by Klaus Alexander Seistrup
    <klaus@seistrup.dk>) was inspired by an algorithm conceived by
    Lambert Meertens.  See also the ABC Programmer's Handbook, by Geurts,
    Meertens & Pemberton, published by Prentice-Hall (UK) Ltd., 1990.


pix.cal

    pi_of_x(x)

    Calculate the number of primes < x using A(n+1)=A(n-1)+A(n-2).  This
    is a SLOW painful method ... the builtin pix(x) is much faster.
    Still, this method is interesting.


pollard.cal

    pfactor(N, N, ai, af)

    Factor using Pollard's p-1 method.


poly.cal

    Calculate with polynomials of one variable.	 There are many functions.
    Read the documentation in the resource file.


prompt.cal

    adder()
    showvalues(str)

    Demonstration of some uses of prompt() and eval().


psqrt.cal

    psqrt(u, p)

    Calculate square roots modulo a prime


qtime.cal

    qtime(utc_hr_offset)

    Print the time as English sentence given the hours offset from UTC.


quat.cal

    quat(a, b, c, d)
    quat_print(a)
    quat_norm(a)
    quat_abs(a, e)
    quat_conj(a)
    quat_add(a, b)
    quat_sub(a, b)
    quat_inc(a)
    quat_dec(a)
    quat_neg(a)
    quat_mul(a, b)
    quat_div(a, b)
    quat_inv(a)
    quat_scale(a, b)
    quat_shift(a, b)

    Calculate using quaternions of the form: a + bi + cj + dk.	In these
    functions, quaternions are manipulated in the form: s + v, where
    s is a scalar and v is a vector of size 3.


randbitrun.cal

    randbitrun([run_cnt])

    Using randbit(1) to generate a sequence of random bits, determine if
    the number and length of identical bits runs match what is expected.
    By default, run_cnt is to test the next 65536 random values.

    This tests the a55 generator.


randmprime.cal

    randmprime(bits, seed [,dbg])

    Find a prime of the form h*2^n-1 >= 2^bits for some given x.  The
    initial search points for 'h' and 'n' are selected by a cryptographic
    pseudo-random number generator.  The optional argument, dbg, if set
    to 1, 2 or 3 turn on various debugging print statements.


randombitrun.cal

    randombitrun([run_cnt])

    Using randombit(1) to generate a sequence of random bits, determine if
    the number and length of identical bits runs match what is expected.
    By default, run_cnt is to test the next 65536 random values.

    This tests the Blum-Blum-Shub generator.


randomrun.cal

    randomrun([run_cnt])

    Perform the "G. Run test" (pp. 65-68) as found in Knuth's "Art of
    Computer Programming - 2nd edition", Volume 2, Section 3.3.2 on
    the builtin rand() function.  This function will generate run_cnt
    64 bit values.  By default, run_cnt is to test the next 65536
    random values.

    This tests the Blum-Blum-Shub generator.


randrun.cal

    randrun([run_cnt])

    Perform the "G. Run test" (pp. 65-68) as found in Knuth's "Art of
    Computer Programming - 2nd edition", Volume 2, Section 3.3.2 on
    the builtin rand() function.  This function will generate run_cnt
    64 bit values.  By default, run_cnt is to test the next 65536
    random values.

    This tests the a55 generator.

repeat.cal

    repeat(digit_set, repeat_count)

    Return the value of the digit_set repeated repeat_count times.
    Both digit_set and repeat_count must be integers > 0.

    For example repeat(423,5) returns the value 423423423423423,
    which is the digit_set 423 repeated 5 times.


regress.cal

    Test the correct execution of the calculator by reading this resource
    file.  Errors are reported with '****' messages, or worse. :-)


screen.cal

    up
    CUU	/* same as up */
    down = CUD
    CUD	/* same as down */
    forward
    CUF	/* same as forward */
    back = CUB
    CUB	/* same as back */
    save
    SCP	/* same as save */
    restore
    RCP	/* same as restore */
    cls
    home
    eraseline
    off
    bold
    faint
    italic
    blink
    rapidblink
    reverse
    concealed
    /* Lowercase indicates foreground, uppercase background */
    black
    red
    green
    yellow
    blue
    magenta
    cyan
    white
    Black
    Red
    Green
    Yellow
    Blue
    Magenta
    Cyan
    White

    Define ANSI control sequences providing (i.e., cursor movement,
    changing foreground or background color, etc.) for VT100 terminals
    and terminal window emulators (i.e., xterm, Apple OS/X Terminal,
    etc.) that support them.

    For example:

	read screen
	print green:"This is green. ":red:"This is red.":black


seedrandom.cal

    seedrandom(seed1, seed2, bitsize [,trials])

    Given:
	seed1 - a large random value (at least 10^20 and perhaps < 10^93)
	seed2 - a large random value (at least 10^20 and perhaps < 10^93)
	size - min Blum modulus as a power of 2 (at least 100, perhaps > 1024)
	trials - number of ptest() trials (default 25) (optional arg)

    Returns:
	the previous random state

    Seed the cryptographically strong Blum generator.  This functions allows
    one to use the raw srandom() without the burden of finding appropriate
    Blum primes for the modulus.


set8700.cal

    set8700_getA1() defined
    set8700_getA2() defined
    set8700_getvar() defined
    set8700_f(set8700_x) defined
    set8700_g(set8700_x) defined

    Declare globals and define functions needed by dotest() (see
    dotest.cal) to evaluate set8700.line a line at a time.


set8700.line

    A line-by-line evaluation file for dotest() (see dotest.cal).
    The set8700.cal file (and dotest.cal) should be read first.


smallfactors.cal

    smallfactors(x0)
    printsmallfactors(flist)

    Lists the prime factors of numbers smaller than 2^32. Try for example:
    printsmallfactors(smallfactors(10!)).


solve.cal

    solve(low, high, epsilon)

    Solve the equation f(x) = 0 to within the desired error value for x.
    The function 'f' must be defined outside of this routine, and the
    low and high values are guesses which must produce values with
    opposite signs.


specialfunctions.cal

    beta(a,b)

    Calculates the value of the beta function.  See:

	https://en.wikipedia.org/wiki/Beta_function
        http://mathworld.wolfram.com/BetaFunction.html
        http://dlmf.nist.gov/5.12

    for information on the beta function.


    betainc(a,b,z)

    Calculates the value of the regularized incomplete beta function.  See:

	https://en.wikipedia.org/wiki/Beta_function
        http://mathworld.wolfram.com/RegularizedBetaFunction.html
        http://dlmf.nist.gov/8.17

    for information on the regularized incomplete beta function.


    expoint(z)

    Calculates the value of the exponential integral Ei(z) function at z.
    See:

	http://en.wikipedia.org/wiki/Exponential_integral
        http://www.cs.utah.edu/~vpegorar/research/2011_JGT/

    for information on the exponential integral Ei(z) function.


    erf(z)

    Calculates the value of the error function at z.  See:

	http://en.wikipedia.org/wiki/Error_function

    for information on the error function function.


    erfc(z)

    Calculates the value of the complementary error function at z.  See:

	http://en.wikipedia.org/wiki/Error_function

    for information on the complementary error function function.


    erfi(z)

    Calculates the value of the imaginary error function at z.  See:

	http://en.wikipedia.org/wiki/Error_function

    for information on the imaginary error function function.


    erfinv(x)

    Calculates the inverse of the error function at x.  See:

	http://en.wikipedia.org/wiki/Error_function

    for information on the inverse of the error function function.


    faddeeva(z)

    Calculates the value of the complex error function at z.  See:

	http://en.wikipedia.org/wiki/Faddeeva_function

    for information on the complex error function function.


    gamma(z)

    Calculates the value of the Euler gamma function at z.  See:

	http://en.wikipedia.org/wiki/Gamma_function
        http://dlmf.nist.gov/5

    for information on the Euler gamma function.


    gammainc(a,z)

    Calculates the value of the lower incomplete gamma function for
    arbitrary a, z.  See:

	http://en.wikipedia.org/wiki/Incomplete_gamma_function

    for information on the lower incomplete gamma function.

    gammap(a,z)

    Calculates the value of the regularized lower incomplete gamma
    function for a, z with a not in -N.  See:

	http://en.wikipedia.org/wiki/Incomplete_gamma_function

    for information on the regularized lower incomplete gamma function.

    gammaq(a,z)

    Calculates the value of the regularized upper incomplete gamma
    function for a, z with a not in -N.  See:

	http://en.wikipedia.org/wiki/Incomplete_gamma_function

    for information on the regularized upper incomplete gamma function.


    heavisidestep(x)

    Computes the Heaviside stepp function (1+sign(x))/2


    harmonic(limit)

    Calculates partial values of the harmonic series up to limit.  See:

	http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
        http://mathworld.wolfram.com/HarmonicSeries.html

    for information on the harmonic series.


    lnbeta(a,b)

    Calculates the natural logarithm of the beta function.  See:

	https://en.wikipedia.org/wiki/Beta_function
        http://mathworld.wolfram.com/BetaFunction.html
        http://dlmf.nist.gov/5.12

    for information on the beta function.

    lngamma(z)

    Calculates the value of the logarithm of the Euler gamma function
    at z.  See:

	http://en.wikipedia.org/wiki/Gamma_function
        http://dlmf.nist.gov/5.15

    for information on the derivatives of the the Euler gamma function.


    polygamma(m,z)

    Calculates the value of the m-th derivative of the Euler gamma
    function at z.  See:

	http://en.wikipedia.org/wiki/Polygamma
        http://dlmf.nist.gov/5

    for information on the n-th derivative ofthe Euler gamma function. This
    function depends on the script zeta2.cal.


    psi(z)

    Calculates the value of the first derivative of the Euler gamma
    function at z.  See:

	http://en.wikipedia.org/wiki/Digamma_function
        http://dlmf.nist.gov/5

    for information on the first derivative of the Euler gamma function.


    zeta(s)

    Calculates the value of the Rieman Zeta function at s.  See:

	http://en.wikipedia.org/wiki/Riemann_zeta_function
        http://dlmf.nist.gov/25.2

    for information on the Riemann zeta function. This function depends
    on the script zeta2.cal.


statistics.cal

    gammaincoctave(z,a)

    Computes the regularized incomplete gamma function in a way to
    correspond with the function in Octave.

    invbetainc(x,a,b)

    Computes the inverse of the regularized beta function. Does so the
    brute-force way wich makes it a bit slower.

    betapdf(x,a,b)
    betacdf(x,a,b)
    betacdfinv(x,a,b)
    betamedian(a,b)
    betamode(a,b)
    betavariance(a,b)
    betalnvariance(a,b)
    betaskewness(a,b)
    betakurtosis(a,b)
    betaentropy(a,b)
    normalpdf(x,mu,sigma)
    normalcdf(x,mu,sigma)
    probit(p)
    normalcdfinv(p,mu,sigma)
    normalmean(mu,sigma)
    normalmedian(mu,sigma)
    normalmode(mu,sigma)
    normalvariance(mu,sigma)
    normalskewness(mu,sigma)
    normalkurtosis(mu,sigma)
    normalentropy(mu,sigma)
    normalmgf(mu,sigma,t)
    normalcf(mu,sigma,t)
    chisquaredpdf(x,k)
    chisquaredpcdf(x,k)
    chisquaredmean(x,k)
    chisquaredmedian(x,k)
    chisquaredmode(x,k)
    chisquaredvariance(x,k)
    chisquaredskewness(x,k)
    chisquaredkurtosis(x,k)
    chisquaredentropy(x,k)
    chisquaredmfg(k,t)
    chisquaredcf(k,t)

    Calculates a bunch of (hopefully) aptly named statistical functions.


strings.cal

    isascii(c)
    isblank(c)

    Implements some of the functions of libc's ctype.h and strings.h.

    NOTE: A number of the ctype.h and strings.h functions are now builtin
          functions in calc.

   WARNING: If the remaining functions in this calc resource file become
	    calc builtin functions, then strings.cal may be removed in
	    a future release.


sumsq.cal

    ss(p)

    Determine the unique two positive integers whose squares sum to the
    specified prime.  This is always possible for all primes of the form
    4N+1, and always impossible for primes of the form 4N-1.


sumtimes.cal

    timematsum(N)
    timelistsum(N)
    timematsort(N)
    timelistsort(N)
    timematreverse(N)
    timelistreverse(N)
    timematssq(N)
    timelistssq(N)
    timehmean(N,M)
    doalltimes(N)

    Give the user CPU time for various ways of evaluating sums, sums of
    squares, etc, for large lists and matrices.  N is the size of
    the list or matrix to use.  The doalltimes() function will run
    all fo the sumtimes tests.  For example:

    	doalltimes(1e6);


surd.cal

    surd(a, b)
    surd_print(a)
    surd_conj(a)
    surd_norm(a)
    surd_value(a, xepsilon)
    surd_add(a, b)
    surd_sub(a, b)
    surd_inc(a)
    surd_dec(a)
    surd_neg(a)
    surd_mul(a, b)
    surd_square(a)
    surd_scale(a, b)
    surd_shift(a, b)
    surd_div(a, b)
    surd_inv(a)
    surd_sgn(a)
    surd_cmp(a, b)
    surd_rel(a, b)

    Calculate using quadratic surds of the form: a + b * sqrt(D).


test1700.cal

    value

    This resource files is used by regress.cal to test the read and
    use keywords.


test2600.cal

    global defaultverbose
    global err
    testismult(str, n, verbose)
    testsqrt(str, n, eps, verbose)
    testexp(str, n, eps, verbose)
    testln(str, n, eps, verbose)
    testpower(str, n, b, eps, verbose)
    testgcd(str, n, verbose)
    cpow(x, n, eps)
    cexp(x, eps)
    cln(x, eps)
    mkreal()
    mkcomplex()
    mkbigreal()
    mksmallreal()
    testappr(str, n, verbose)
    checkappr(x, y, z, verbose)
    checkresult(x, y, z, a)
    test2600(verbose, tnum)

    This resource files is used by regress.cal to test some of builtin
    functions in terms of accuracy and roundoff.


test2700.cal

    global defaultverbose
    mknonnegreal()
    mkposreal()
    mkreal_2700()
    mknonzeroreal()
    mkposfrac()
    mkfrac()
    mksquarereal()
    mknonsquarereal()
    mkcomplex_2700()
    testcsqrt(str, n, verbose)
    checksqrt(x, y, z, v)
    checkavrem(A, B, X, eps)
    checkrounding(s, n, t, u, z)
    iscomsq(x)
    test2700(verbose, tnum)

    This resource files is used by regress.cal to test sqrt() for real and
    complex values.


test3100.cal

    obj res
    global md
    res_test(a)
    res_sub(a, b)
    res_mul(a, b)
    res_neg(a)
    res_inv(a)
    res(x)

    This resource file is used by regress.cal to test determinants of
    a matrix.


test3300.cal

    global defaultverbose
    global err
    testi(str, n, N, verbose)
    testr(str, n, N, verbose)
    test3300(verbose, tnum)

    This resource file is used by regress.cal to provide for more
    determinant tests.


test3400.cal

    global defaultverbose
    global err
    test1(str, n, eps, verbose)
    test2(str, n, eps, verbose)
    test3(str, n, eps, verbose)
    test4(str, n, eps, verbose)
    test5(str, n, eps, verbose)
    test6(str, n, eps, verbose)
    test3400(verbose, tnum)

    This resource file is used by regress.cal to test trig functions.
    containing objects.

test3500.cal

    global defaultverbose
    global err
    testfrem(x, y, verbose)
    testgcdrem(x, y, verbose)
    testf(str, n, verbose)
    testg(str, n, verbose)
    testh(str, n, N, verbose)
    test3500(verbose, n, N)

    This resource file is used by regress.cal to test the functions frem,
    fcnt, gcdrem.


test4000.cal

    global defaultverbose
    global err
    global BASEB
    global BASE
    global COUNT
    global SKIP
    global RESIDUE
    global MODULUS
    global K1
    global H1
    global K2
    global H2
    global K3
    global H3
    plen(N) defined
    rlen(N) defined
    clen(N) defined
    ptimes(str, N, n, count, skip, verbose) defined
    ctimes(str, N, n, count, skip, verbose) defined
    crtimes(str, a, b, n, count, skip, verbose) defined
    ntimes(str, N, n, count, skip, residue, mod, verbose) defined
    testnextcand(str, N, n, cnt, skip, res, mod, verbose) defined
    testnext1(x, y, count, skip, residue, modulus) defined
    testprevcand(str, N, n, cnt, skip, res, mod, verbose) defined
    testprev1(x, y, count, skip, residue, modulus) defined
    test4000(verbose, tnum) defined

    This resource file is used by regress.cal to test ptest, nextcand and
    prevcand builtins.


test4100.cal

    global defaultverbose
    global err
    global K1
    global K2
    global BASEB
    global BASE
    rlen_4100(N) defined
    olen(N) defined
    test1(x, y, m, k, z1, z2) defined
    testall(str, n, N, M, verbose) defined
    times(str, N, n, verbose) defined
    powtimes(str, N1, N2, n, verbose) defined
    inittimes(str, N, n, verbose) defined
    test4100(verbose, tnum) defined

    This resource file is used by regress.cal to test REDC operations.


test4600.cal

    stest(str [, verbose]) defined
    ttest([m, [n [,verbose]]]) defined
    sprint(x) defined
    findline(f,s) defined
    findlineold(f,s) defined
    test4600(verbose, tnum) defined

    This resource file is used by regress.cal to test searching in files.


test5100.cal

    global a5100
    global b5100
    test5100(x) defined

    This resource file is used by regress.cal to test the new code generator
    declaration scope and order.


test5200.cal

    global a5200
    static a5200
    f5200(x) defined
    g5200(x) defined
    h5200(x) defined

    This resource file is used by regress.cal to test the fix of a
    global/static bug.


test8400.cal

    test8400() defined

    This resource file is used by regress.cal to check for quit-based
    memory leaks.


test8500.cal

    global err_8500
    global L_8500
    global ver_8500
    global old_seed_8500
    global cfg_8500
    onetest_8500(a,b,rnd) defined
    divmod_8500(N, M1, M2, testnum) defined

    This resource file is used by regress.cal to the // and % operators.


test8600.cal

    global min_8600
    global max_8600
    global hash_8600
    global hmean_8600

    This resource file is used by regress.cal to test a change of
    allowing up to 1024 args to be passed to a builtin function.


test8900.cal

    This function tests a number of calc resource functions contributed
    by Christoph Zurnieden.  These include:

	bernpoly.cal
	brentsolve.cal
	constants.cal
	factorial2.cal
	factorial.cal
	lambertw.cal
	lnseries.cal
	specialfunctions.cal
	statistics.cal
	toomcook.cal
	zeta2.cal


unitfrac.cal

    unitfrac(x)

    Represent a fraction as sum of distinct unit fractions.


toomcook.cal


    toomcook3(a,b)
    toomcook4(a,b)

    Toom-Cook multiplication algorithm.  Multiply two integers a,b by
    way of the Toom-Cook algorithm.  See:

	http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication

    toomcook3square(a)
    toomcook4square(a)

    Square the integer a by way of the Toom-Cook algorithm.  See:

	http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication

    The function toomCook4(a,b) calls the function toomCook3(a,b) which
    calls built-in multiplication at a specific cut-off point. The
    squaring functions act in the same way.


varargs.cal

    sc(a, b, ...)

    Example program to use 'varargs'.  Program to sum the cubes of all
    the specified numbers.


xx_print.cal

    is_octet(a) defined
    list_print(a) defined
    mat_print (a) defined
    octet_print(a) defined
    blk_print(a) defined
    nblk_print (a) defined
    strchar(a) defined
    file_print(a) defined
    error_print(a) defined

    Demo for the xx_print object routines.


zeta2.cal

    hurwitzzeta(s,a)

    Calculate the value of the Hurwitz Zeta function.  See:

	http://en.wikipedia.org/wiki/Hurwitz_zeta_function
        http://dlmf.nist.gov/25.11

    for information on this special zeta function.


## Copyright (C) 2000,2014  David I. Bell and Landon Curt Noll
##
## Primary author: Landon Curt Noll
##
## Calc is open software; you can redistribute it and/or modify it under
## the terms of the version 2.1 of the GNU Lesser General Public License
## as published by the Free Software Foundation.
##
## Calc is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
## or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
## Public License for more details.
##
## A copy of version 2.1 of the GNU Lesser General Public License is
## distributed with calc under the filename COPYING-LGPL.  You should have
## received a copy with calc; if not, write to Free Software Foundation, Inc.
## 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
##
## @(#) $Revision: 30.9 $
## @(#) $Id: README,v 30.9 2014/10/06 08:44:18 chongo Exp $
## @(#) $Source: /usr/local/src/bin/calc/cal/RCS/README,v $
##
## Under source code control:	1990/02/15 01:50:32
## File existed as early as:	before 1990
##
## chongo <was here> /\oo/\	http://www.isthe.com/chongo/
## Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/