/usr/share/calc/help/mat is in apcalc-common 2.12.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | NAME
mat - keyword to create a matrix value
SYNOPSIS
mat [index-range-list] [ = {value_0. ...} ]
mat [] [= {value_0, ...}]
mat variable_1 ... [index-range-list] [ = {value_0, ...} ]
mat variable_1 ... [] [ = {value_0, ...} ]
mat [index-range-list_1[index-ranges-list_2] ... [ = { { ...} ...} ]
decl id_1 id_2 ... [index-range-list] ...
TYPES
index-range-list range_1 [, range_2, ...] up to 4 ranges
range_1, ... integer, or integer_1 : integer_2
value, value_1, ... any
variable_1 ... lvalue
decl declarator = global, static or local
id_1, ... identifier
DESCRIPTION
The expression mat [index-range-list] returns a matrix value.
This may be assigned to one or more lvalues A, B, ... by either
mat A B ... [index-range-list]
or
A = B = ... = mat[index-range-list]
If a variable is specified by an expression that is not a symbol with
possibly object element specifiers, the expression should be enclosed
in parentheses. For example, parentheses are required in
mat (A[2]) [3] and mat (*p) [3] but mat P.x [3] is acceptable.
When an index-range is specified as integer_1 : integer_2, where
integer_1 and integer_2 are expressions which evaluate to integers,
the index-range consists of all integers from the minimum of the
two integers to the maximum of the two integers. For example,
mat[2:5, 0:4] and mat[5:2, 4:0] return the same matrix value.
If an index-range is an expression which evaluates to an integer,
the range is as if specified by 0 : integer - 1. For example,
mat[4] and mat[0:3] return the same 4-element matrix; mat[-2] and
mat[-3:0] return the same 4-element matrix.
If the variable A has a matrix value, then for integer indices
i_1, i_2, ..., equal in number to the number of ranges specified at
its creation, and such that each index is in the corresponding range,
the matrix element associated with those index list is given as an
lvalue by the expressions A[i_1, i_2, ...].
The elements of the matrix are stored internally as a linear array
in which locations are arranged in order of increasing indices.
For example, in order of location, the six element of A = mat [2,3]
are
A[0,0], A[0,1], A[0,2], A[1,0], A[1,,1], A[1,2].
These elements may also be specified using the double-bracket operator
with a single integer index as in A[[0]], A[[1]], ..., A[[5]].
If p is assigned the value &A[0.0], the address of A[[i]] for 0 <= i < 6
is p + i as long as A exists and a new value is not assigned to A.
When a matrix is created, each element is initially assigned the
value zero. Other values may be assigned then or later using the
"= {...}" assignment operation. Thus
A = {value_0, value_1, ...}
assigns the values value_0, value_1, ... to the elements A[[0]],
A[[1]], ... Any blank "value" is passed over. For example,
A = {1, , 2}
will assign the value 1 to A[[0]], 2 to A[[2]] and leave all other
elements unchanged. Values may also be assigned to elements by
simple assignments, as in A[0,0] = 1, A[0,2] = 2;
If the index-range is left blank but an initializer list is specified
as in:
; mat A[] = {1, 2 }
; B = mat[] = {1, , 3, }
the matrix created is one-dimensional. If the list contains a
positive number n of values or blanks, the result is as if the
range were specified by [n], i.e. the range of indices is from
0 to n - 1. In the above examples, A is of size 2 with A[0] = 1
and A[1] = 2; B is of size 4 with B[0] = 1, B[1] = B[3] = 0,
B[2] = 3. The specification mat[] = { } creates the same as mat[1].
If the index-range is left blank and no initializer list is specified,
as in mat C[] or C = mat[], the matrix assigned to C has zero
dimension; this has one element C[].
To assign a value using "= { ...}" at the same time as creating C,
parentheses are required as in (mat[]) = {value} or (mat C[]) =
{value}. Later a value may be assigned to C[] by C[] = value or
C = {value}.
The value assigned at any time to any element of a matrix can be of
any type - number, string, list, matrix, object of previously specified
type, etc. For some matrix operations there are of course conditions
that elements may have to satisfy: for example, addition of matrices
requires that addition of corresponding elements be possible.
If an element of a matrix is a structure for which indices or an
object element specifier is required, an element of that structure is
referred to by appropriate uses of [ ] or ., and so on if an element
of that element is required.
For example, one may have an expressions like:
; A[1,2][3].alpha[2];
if A[1,2][3].alpha is a list with at least three elements, A[1,2][3] is
an object of a type like obj {alpha, beta}, A[1,2] is a matrix of
type mat[4] and A is a mat[2,3] matrix. When an element of a matrix
is a matrix and the total number of indices does not exceed 4, the
indices can be combined into one list, e.g. the A[1,2][3] in the
above example can be shortened to A[1,2,3]. (Unlike C, A[1,2] cannot
be expressed as A[1][2].)
The function ismat(V) returns 1 if V is a matrix, 0 otherwise.
isident(V) returns 1 if V is a square matrix with diagonal elements 1,
off-diagonal elements zero, or a zero- or one-dimensional matrix with
every element 1; otherwise zero is returned. Thus isident(V) = 1
indicates that for V * A and A * V where A is any matrix of
for which either product is defined and the elements of A are real
or complex numbers, that product will equal A.
If V is matrix-valued, test(V) returns 0 if every element of V tests
as zero; otherwise 1 is returned.
The dimension of a matrix A, i.e. the number of index-ranges in the
initial creation of the matrix, is returned by the function matdim(A).
For 1 <= i <= matdim(A), the minimum and maximum values for the i-th
index range are returned by matmin(A, i) and matmax(A,i), respectively.
The total number of elements in the matrix is returned by size(A).
The sum of the elements in the matrix is returned by matsum(A).
The default method of printing matrices is to give a line of information
about the matrix, and to list on separate lines up to 15 elements,
the indices and either the value (for numbers, strings, objects) or
some descriptive information for lists or matrices, etc.
Numbers are displayed in the current number-printing mode.
The maximum number of elements to be printed can be assigned
any nonnegative integer value m by config("maxprint", m).
Users may define another method of printing matrices by defining a
function mat_print(M); for example, for a not too big 2-dimensional
matrix A it is a common practice to use a loop like:
define mat_print(A) {
local i,j;
for (i = matmin(A,1); i <= matmax(A,1); i++) {
if (i != matmin(A,1))
printf("\t");
for (j = matmin(A,2); j <= matmax(A,2); j++)
printf(" [%d,%d]: %e", i, j, A[i,j]);
if (i != matmax(A,1))
printf("\n");
}
}
So that when one defines a 2D matrix such as:
; mat X[2,3] = {1,2,3,4,5,6}
then printing X results in:
[0,0]: 1 [0,1]: 2 [0,2]: 3
[1,0]: 4 [1,1]: 5 [1,2]: 6
The default printing may be restored by
; undefine mat_print;
The keyword "mat" followed by two or more index-range-lists returns a
matrix with indices specified by the first list, whose elements are
matrices as determined by the later index-range-lists. For
example mat[2][3] is a 2-element matrix, each of whose elements has
as its value a 3-element matrix. Values may be assigned to the
elements of the innermost matrices by nested = {...} operations as in
; mat [2][3] = {{1,2,3},{4,5,6}}
An example of the use of mat with a declarator is
; global mat A B [2,3], C [4]
This creates, if they do not already exist, three global variables with
names A, B, C, and assigns to A and B the value mat[2,3] and to C mat[4].
Some operations are defined for matrices.
A == B
Returns 1 if A and B are of the same "shape" and "corresponding"
elements are equal; otherwise 0 is returned. Being of the same
shape means they have the same dimension d, and for each i <= d,
matmax(A,i) - matmin(A,i) == matmax(B,i) - matmin(B,i),
One consequence of being the same shape is that the matrices will
have the same size. Elements "correspond" if they have the same
double-bracket indices; thus A == B implies that A[[i]] == B[[i]]
for 0 <= i < size(A) == size(B).
A + B
A - B
These are defined A and B have the same shape, the element
with double-bracket index j being evaluated by A[[j]] + B[[j]] and
A[[j]] - B[[j]], respectively. The index-ranges for the results
are those for the matrix A.
A[i,j]
If A is two-dimensional, it is customary to speak of the indices
i, j in A[i,j] as referring to rows and columns; the number of
rows is matmax(A,1) - matmin(A,1) + 1; the number of columns if
matmax(A,2) - matmin(A,2) + 1. A matrix is said to be square
if it is two-dimensional and the number of rows is equal to the
number of columns.
A * B
Multiplication is defined provided certain conditions by the
dimensions and shapes of A and B are satisfied. If both have
dimension 2 and the column-index-list for A is the same as
the row-index-list for B, C = A * B is defined in the usual
way so that for i in the row-index-list of A and j in the
column-index-list for B,
C[i,j] = Sum A[i,k] * B[k,j]
the sum being over k in the column-index-list of A. The same
formula is used so long as the number of columns in A is the same
as the number of rows in B and k is taken to refer to the offset
from matmin(A,2) and matmin(B,1), respectively, for A and B.
If the multiplications and additions required cannot be performed,
an execution error may occur or the result for C may contain
one or more error-values as elements.
If A or B has dimension zero, the result for A * B is simply
that of multiplying the elements of the other matrix on the
left by A[] or on the right by B[].
If both A and B have dimension 1, A * B is defined if A and B
have the same size; the result has the same index-list as A
and each element is the product of corresponding elements of
A and B. If A and B have the same index-list, this multiplication
is consistent with multiplication of 2D matrices if A and B are
taken to represent 2D matrices for which the off-diagonal elements
are zero and the diagonal elements are those of A and B.
the real and complex numbers.
If A is of dimension 1 and B is of dimension 2, A * B is defined
if the number of rows in B is the same as the size of A. The
result has the same index-lists as B; each row of B is multiplied
on the left by the corresponding element of A.
If A is of dimension 2 and B is of dimension 1, A * B is defined
if number of columns in A is the same as the size of A. The
result has the same index-lists as A; each column of A is
multiplied on the right by the corresponding element of B.
The algebra of additions and multiplications involving both one-
and two-dimensional matrices is particularly simple when all the
elements are real or complex numbers and all the index-lists are
the same, as occurs, for example, if for some positive integer n,
all the matrices start as mat [n] or mat [n,n].
det(A)
If A is a square, det(A) is evaluated by an algorithm that returns
the determinant of A if the elements of A are real or complex
numbers, and if such an A is non-singular, inverse(A) returns
the inverse of A indexed in the same way as A. For matrix A of
dimension 0 or 1, det(A) is defined as the product of the elements
of A in the order in which they occur in A, inverse(A) returns
a matrix indexed in the same way as A with each element inverted.
The following functions are defined to return matrices with the same
index-ranges as A and the specified operations performed on all
elements of A. Here num is an arbitrary complex number (nonzero
when it is a divisor), int an integer, rnd a rounding-type
specifier integer, real a real number.
num * A
A * num
A / num
- A
conj(A)
A << int, A >> int
scale(A, int)
round(A, int, rnd)
bround(A, int, rnd)
appr(A, real, rnd)
int(A)
frac(A)
A // real
A % real
A ^ int
If A and B are one-dimensional of the same size dp(A, B) returns
their dot-product, i.e. the sum of the products of corresponding
elements.
If A and B are one-dimension and of size 3, cp(A, B) returns their
cross-product.
randperm(A) returns a matrix indexed the same as A in which the elements
of A have been randomly permuted.
sort(A) returns a matrix indexed the same as A in which the elements
of A have been sorted.
If A is an lvalue whose current value is a matrix, matfill(A, v)
assigns the value v to every element of A, and if also, A is
square, matfill(A, v1, v2) assigns v1 to the off-diagonal elements,
v2 to the diagonal elements. To create and assign to A the unit
n * n matrix, one may use matfill(mat A[n,n], 0, 1).
For a square matrix A, mattrace(A) returns the trace of A, i.e. the
sum of the diagonal elements. For zero- or one-dimensional A,
mattrace(A) returns the sum of the elements of A.
For a two-dimensional matrix A, mattrans(A) returns the transpose
of A, i.e. if A is mat[m,n], it returns a mat[n,m] matrix with
[i,j] element equal to A[j,i]. For zero- or one-dimensional A,
mattrace(A) returns a matrix with the same value as A.
The functions search(A, value, start, end]) and
rsearch(A, value, start, end]) return the first or last index i
for which A[[i]] == value and start <= i < end, or if there is
no such index, the null value. For further information on default
values and the use of an "accept" function, see the help files for
search and rsearch.
reverse(A) returns a matrix with the same index-lists as A but the
elements in reversed order.
The copy and blkcpy functions may be used to copy data to a matrix from
a matrix or list, or from a matrix to a list. In copying from a
matrix to a matrix the matrices need not have the same dimension;
in effect they are treated as linear arrays.
EXAMPLE
; obj point {x,y}
; mat A[5] = {1, 2+3i, "ab", mat[2] = {4,5}, obj point = {6,7}}
; A
mat [5] (5 elements, 5 nonzero):
[0] = 1
[1] = 2+3i
[2] = "ab"
[3] = mat [2] (2 elements, 2 nonzero)
[4] = obj point {6, 7}
; print A[0], A[1], A[2], A[3][0], A[4].x
1 2+3i ab 4 6
; define point_add(a,b) = obj point = {a.x + b.x, a.y + b.y}
point_add(a,b) defined
; mat [B] = {8, , "cd", mat[2] = {9,10}, obj point = {11,12}}
; A + B
mat [5] (5 elements, 5 nonzero):
[0] = 9
[1] = 2+3i
[2] = "abcd"
[3] = mat [2] (2 elements, 2 nonzero)
[4] = obj point {17, 19}
; mat C[2,2] = {1,2,3,4}
; C^10
mat [2,2] (4 elements, 4 nonzero):
[0,0] = 4783807
[0,1] = 6972050
[1,0] = 10458075
[1,1] = 15241882
; C^-10
mat [2,2] (4 elements, 4 nonzero):
[0,0] = 14884.650390625
[0,1] = -6808.642578125
[1,0] = -10212.9638671875
[1,1] = 4671.6865234375
; mat A[4] = {1,2,3,4}, A * reverse(A);
mat [4] (4 elements, 4 nonzero):
[0] = 4
[1] = 6
[2] = 6
[3] = 4
LIMITS
The theoretical upper bound for the absolute values of indices is
2^31 - 1, but the size of matrices that can be handled in practice will
be limited by the availability of memory and what is an acceptable
runtime. For example, although it may take only a fraction of a
second to invert a 10 * 10 matrix, it will probably take about 1000
times as long to invert a 100 * 100 matrix.
LINK LIBRARY
n/a
SEE ALSO
ismat, matdim, matmax, matmin, mattrans, mattrace, matsum, matfill,
det, inverse, isident, test, config, search, rsearch, reverse, copy,
blkcpy, dp, cp, randperm, sort
## Copyright (C) 1999-2006 Landon Curt Noll
##
## Calc is open software; you can redistribute it and/or modify it under
## the terms of the version 2.1 of the GNU Lesser General Public License
## as published by the Free Software Foundation.
##
## Calc is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
## Public License for more details.
##
## A copy of version 2.1 of the GNU Lesser General Public License is
## distributed with calc under the filename COPYING-LGPL. You should have
## received a copy with calc; if not, write to Free Software Foundation, Inc.
## 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
##
## @(#) $Revision: 30.1 $
## @(#) $Id: mat,v 30.1 2007/03/16 11:10:42 chongo Exp $
## @(#) $Source: /usr/local/src/bin/calc/help/RCS/mat,v $
##
## Under source code control: 1991/07/21 04:37:22
## File existed as early as: 1991
##
## chongo <was here> /\oo/\ http://www.isthe.com/chongo/
## Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/
|