/usr/share/amsn/migmd5.tcl is in amsn-data 0.98.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | ##################################################
#
# md5.tcl - MD5 in Tcl
# Author: Don Libes <libes@nist.gov>, July 1999
# Version 1.2.0
#
# MD5 defined by RFC 1321, "The MD5 Message-Digest Algorithm"
# HMAC defined by RFC 2104, "Keyed-Hashing for Message Authentication"
#
# Most of the comments below come right out of RFC 1321; That's why
# they have such peculiar numbers. In addition, I have retained
# original syntax, bugs in documentation (yes, really), etc. from the
# RFC. All remaining bugs are mine.
#
# HMAC implementation by D. J. Hagberg <dhagberg@millibits.com> and
# is based on C code in RFC 2104.
#
# For more info, see: http://expect.nist.gov/md5pure
#
# - Don
#
# Modified by Miguel Sofer to use inlines and simple variables
# Modified by Alvaro J. Iradier Muro to avoid using package Trf
##################################################
::Version::setSubversionId {$Id: migmd5.tcl 8064 2007-02-23 00:50:59Z lephilousophe $}
namespace eval ::md5 {
}
# Without Trf use the all-tcl implementation by Don Libes.
# T will be inlined after the definition of md5body
# test md5
#
# This proc is not necessary during runtime and may be omitted if you
# are simply inserting this file into a production program.
#
proc ::md5::test {} {
foreach {msg expected} {
""
"d41d8cd98f00b204e9800998ecf8427e"
"a"
"0cc175b9c0f1b6a831c399e269772661"
"abc"
"900150983cd24fb0d6963f7d28e17f72"
"message digest"
"f96b697d7cb7938d525a2f31aaf161d0"
"abcdefghijklmnopqrstuvwxyz"
"c3fcd3d76192e4007dfb496cca67e13b"
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
"d174ab98d277d9f5a5611c2c9f419d9f"
"12345678901234567890123456789012345678901234567890123456789012345678901234567890"
"57edf4a22be3c955ac49da2e2107b67a"
} {
puts "testing: md5 \"$msg\""
set computed [md5 $msg]
puts "expected: $expected"
puts "computed: $computed"
if {0 != [string compare $computed $expected]} {
puts "FAILED"
} else {
puts "SUCCEEDED"
}
}
}
# time md5
#
# This proc is not necessary during runtime and may be omitted if you
# are simply inserting this file into a production program.
#
proc ::md5::time {} {
foreach len {10 50 100 500 1000 5000 10000} {
set time [::time {md5 [format %$len.0s ""]} 10]
regexp "\[0-9]*" $time msec
puts "input length $len: [expr {$msec/1000}] milliseconds per interation"
}
}
#
# We just define the body of md5pure::md5 here; later we
# regsub to inline a few function calls for speed
#
set ::md5::md5body {
#
# 3.1 Step 1. Append Padding Bits
#
set msgLen [string length $msg]
set padLen [expr {56 - $msgLen%64}]
if {$msgLen % 64 > 56} {
incr padLen 64
}
# pad even if no padding required
if {$padLen == 0} {
incr padLen 64
}
# append single 1b followed by 0b's
append msg [binary format "a$padLen" \200]
#
# 3.2 Step 2. Append Length
#
# RFC doesn't say whether to use little- or big-endian
# code demonstrates little-endian
# This step limits our input to size 2^32b or 2^24B
append msg [binary format "i1i1" [expr {8*$msgLen}] 0]
#
# 3.3 Step 3. Initialize MD Buffer
#
set A [expr 0x67452301]
set B [expr 0xefcdab89]
set C [expr 0x98badcfe]
set D [expr 0x10325476]
#
# 3.4 Step 4. Process Message in 16-Word Blocks
#
# process each 16-word block
# RFC doesn't say whether to use little- or big-endian
# code says little-endian
binary scan $msg i* blocks
set len [llength $blocks]
# loop over the message taking 16 blocks at a time
foreach {X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15} $blocks {
# Save A as AA, B as BB, C as CC, and D as DD.
set AA $A
set BB $B
set CC $C
set DD $D
# Round 1.
# Let [abcd k s i] denote the operation
# a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s).
# [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X0 + $T01}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X1 + $T02}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X2 + $T03}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X3 + $T04}] 22]}]
# [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X4 + $T05}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X5 + $T06}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X6 + $T07}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X7 + $T08}] 22]}]
# [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X8 + $T09}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X9 + $T10}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X10 + $T11}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X11 + $T12}] 22]}]
# [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]
set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X12 + $T13}] 7]}]
set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X13 + $T14}] 12]}]
set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X14 + $T15}] 17]}]
set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X15 + $T16}] 22]}]
# Round 2.
# Let [abcd k s i] denote the operation
# a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s).
# Do the following 16 operations.
# [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X1 + $T17}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X6 + $T18}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X11 + $T19}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X0 + $T20}] 20]}]
# [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X5 + $T21}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X10 + $T22}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X15 + $T23}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X4 + $T24}] 20]}]
# [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X9 + $T25}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X14 + $T26}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X3 + $T27}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X8 + $T28}] 20]}]
# [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]
set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X13 + $T29}] 5]}]
set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X2 + $T30}] 9]}]
set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X7 + $T31}] 14]}]
set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X12 + $T32}] 20]}]
# Round 3.
# Let [abcd k s t] [sic] denote the operation
# a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s).
# Do the following 16 operations.
# [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X5 + $T33}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X8 + $T34}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X11 + $T35}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X14 + $T36}] 23]}]
# [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X1 + $T37}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X4 + $T38}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X7 + $T39}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X10 + $T40}] 23]}]
# [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X13 + $T41}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X0 + $T42}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X3 + $T43}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X6 + $T44}] 23]}]
# [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]
set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X9 + $T45}] 4]}]
set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X12 + $T46}] 11]}]
set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X15 + $T47}] 16]}]
set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X2 + $T48}] 23]}]
# Round 4.
# Let [abcd k s t] [sic] denote the operation
# a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s).
# Do the following 16 operations.
# [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X0 + $T49}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X7 + $T50}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X14 + $T51}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X5 + $T52}] 21]}]
# [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X12 + $T53}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X3 + $T54}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X10 + $T55}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X1 + $T56}] 21]}]
# [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X8 + $T57}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X15 + $T58}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X6 + $T59}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X13 + $T60}] 21]}]
# [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]
set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X4 + $T61}] 6]}]
set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X11 + $T62}] 10]}]
set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X2 + $T63}] 15]}]
set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X9 + $T64}] 21]}]
# Then perform the following additions. (That is increment each
# of the four registers by the value it had before this block
# was started.)
incr A $AA
incr B $BB
incr C $CC
incr D $DD
}
# 3.5 Step 5. Output
# ... begin with the low-order byte of A, and end with the high-order byte
# of D.
return [bytes $A][bytes $B][bytes $C][bytes $D]
}
#
# Here we inline/regsub the functions F, G, H, I and <<<
#
namespace eval ::md5 {
#proc md5pure::F {x y z} {expr {(($x & $y) | ((~$x) & $z))}}
regsub -all {\[ *F +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \2) | ((~\1) \& \3))} md5body
#proc md5pure::G {x y z} {expr {(($x & $z) | ($y & (~$z)))}}
regsub -all {\[ *G +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \3) | (\2 \& (~\3)))} md5body
#proc md5pure::H {x y z} {expr {$x ^ $y ^ $z}}
regsub -all {\[ *H +(\$.) +(\$.) +(\$.) *\]} $md5body {(\1 ^ \2 ^ \3)} md5body
#proc md5pure::I {x y z} {expr {$y ^ ($x | (~$z))}}
regsub -all {\[ *I +(\$.) +(\$.) +(\$.) *\]} $md5body {(\2 ^ (\1 | (~\3)))} md5body
# bitwise left-rotate
if 0 {
proc md5pure::<<< {x i} {
# This works by bitwise-ORing together right piece and left
# piece so that the (original) right piece becomes the left
# piece and vice versa.
#
# The (original) right piece is a simple left shift.
# The (original) left piece should be a simple right shift
# but Tcl does sign extension on right shifts so we
# shift it 1 bit, mask off the sign, and finally shift
# it the rest of the way.
expr {($x << $i) | ((($x >> 1) & 0x7fffffff) >> (31-$i))}
}
}
# inline <<<
regsub -all {\[ *<<< +\[ *expr +({[^\}]*})\] +([0-9]+) *\]} $md5body {(([set x [expr \1]] << \2) | ((($x >> 1) \& 0x7fffffff) >> (31-\2)))} md5body
# inline the values of T
set map {}
foreach \
tName {
T01 T02 T03 T04 T05 T06 T07 T08 T09 T10
T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
T21 T22 T23 T24 T25 T26 T27 T28 T29 T30
T31 T32 T33 T34 T35 T36 T37 T38 T39 T40
T41 T42 T43 T44 T45 T46 T47 T48 T49 T50
T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T61 T62 T63 T64 } \
tVal {
0xd76aa478 0xe8c7b756 0x242070db 0xc1bdceee
0xf57c0faf 0x4787c62a 0xa8304613 0xfd469501
0x698098d8 0x8b44f7af 0xffff5bb1 0x895cd7be
0x6b901122 0xfd987193 0xa679438e 0x49b40821
0xf61e2562 0xc040b340 0x265e5a51 0xe9b6c7aa
0xd62f105d 0x2441453 0xd8a1e681 0xe7d3fbc8
0x21e1cde6 0xc33707d6 0xf4d50d87 0x455a14ed
0xa9e3e905 0xfcefa3f8 0x676f02d9 0x8d2a4c8a
0xfffa3942 0x8771f681 0x6d9d6122 0xfde5380c
0xa4beea44 0x4bdecfa9 0xf6bb4b60 0xbebfbc70
0x289b7ec6 0xeaa127fa 0xd4ef3085 0x4881d05
0xd9d4d039 0xe6db99e5 0x1fa27cf8 0xc4ac5665
0xf4292244 0x432aff97 0xab9423a7 0xfc93a039
0x655b59c3 0x8f0ccc92 0xffeff47d 0x85845dd1
0x6fa87e4f 0xfe2ce6e0 0xa3014314 0x4e0811a1
0xf7537e82 0xbd3af235 0x2ad7d2bb 0xeb86d391
} {
lappend map \$$tName $tVal
}
set md5body [string map $map $md5body]
# Finally, define the proc
proc md5 {msg} $md5body
# unset auxiliary variables
unset md5body tName tVal map
}
proc ::md5::byte0 {i} {expr {0xff & $i}}
proc ::md5::byte1 {i} {expr {(0xff00 & $i) >> 8}}
proc ::md5::byte2 {i} {expr {(0xff0000 & $i) >> 16}}
proc ::md5::byte3 {i} {expr {((0xff000000 & $i) >> 24) & 0xff}}
proc ::md5::bytes {i} {
format %0.2x%0.2x%0.2x%0.2x [byte0 $i] [byte1 $i] [byte2 $i] [byte3 $i]
}
# hmac: hash for message authentication
proc ::md5::hmac {key text} {
# if key is longer than 64 bytes, reset it to MD5(key). If shorter,
# pad it out with null (\x00) chars.
set keyLen [string length $key]
if {$keyLen > 64} {
set key [binary format H32 [md5 $key]]
set keyLen [string length $key]
}
# ensure the key is padded out to 64 chars with nulls.
set padLen [expr {64 - $keyLen}]
append key [binary format "a$padLen" {}]
# Split apart the key into a list of 16 little-endian words
binary scan $key i16 blocks
# XOR key with ipad and opad values
set k_ipad {}
set k_opad {}
foreach i $blocks {
append k_ipad [binary format i [expr {$i ^ 0x36363636}]]
append k_opad [binary format i [expr {$i ^ 0x5c5c5c5c}]]
}
# Perform inner md5, appending its results to the outer key
append k_ipad $text
append k_opad [binary format H* [md5 $k_ipad]]
# Perform outer md5
md5 $k_opad
}
package provide md5 1.4
|